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Zusammenfassung

Die vorliegende Diplomarbeit behandelt die numerische Lösung der Navier-Stokes
Gleichungen mit dem Schwerpunkt Parallelisierung auf Grafikkarten.
Jeder Abschnitt der Arbeit kann weitgehend isoliert behandelt werden, Ausnahmen
sind im Folgenden ausdrücklich erwähnt.
Im Abschnitt Introduction wird das Studium der Navier-Stokes Gleichungen mo-
tiviert und deren Bezug zu Parallelrechnern diskutiert. Derivation of Navier-

Stokes equations zeigt die Grundzüge der Kontinuum-Theorie und ihre Verbin-
dung mit der Hydrodynamik von einem physikalischen Standpunkt und liefert die
Navier-Stokes Gleichungen für inkompressible Fluide. Anschließend wird in Nu-

merical Approach ein numerischer Algorithmus hergeleitet, der auf diesen Gle-
ichungen basiert. Dieser Algorithmus wird in CPU Implementation verwendet
um Fluide auf einem einzelnen Computer-Prozessor zu simulieren. Dieser Abschnitt
beschreibt hauptsächlich die Umwandlung des Algorithmus aus dem vorigen Ab-
schnitt in Programmcode und dessen Ausführungsergebnisse.1 Daraufhin beschreibt
Domain Decomposition einen allgemeinen Weg um einen Fluid-Algorithmus zu
erhalten, der auf Parallelrechnern mit beliebiger Hardware Architektur implemen-
tiert werden kann. Gpu Implementation beschränkt diese Architektur auf NVIDA-
CUDA-fähige Grafikkarten und beschreibt (analoge Gliederung wie im Abschnitt für
CPU’s) die Implementierung auf Solchen in Bezug auf den im vorangegangenen Ab-
schnitt entwickelten Algorithmus.2 Schließlich werden in Conclusion die Ergeb-
nisse zusammengefasst und Schlussfolgerungen aus der Diplomarbeit gezogen.3

1Abhängigkeitsgrad von vorangegangenen Kapiteln ist hier sehr hoch.
2Abschnitt bezieht sich wieder auf vorangegangenen.
3Hängt von allen Abschnitten ab.
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Notations

a Boldface letter represents a column vector a

a · b Dot product of vector a and b
∂
∂x

Partial differential operator with respect to x
∂x Shorthand for ∂

∂x

fx Shorthand for ∂f
∂x

∇ Del vector differential operator (Nabla);
in case R

3: ∇ := i ∂
∂x

+ j ∂
∂y

+ j ∂
∂z

with {i, j,k}

standard basis in R
3

∆ Laplacian differential operator, ∆f := ∇ · (∇f)
n Symbol of the normal vector
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1 Introduction

This diploma thesis deals with computational f luid dynamics (CFD) which is an
intersection of applied physics, mathematics and computer science. Physics is the
science of exploring and describing principles of nature by observation4. The role
of mathematics in CFD is obvious on the one hand since it is used to express ob-
served physical laws and on the other hand given by needs of an algorithm which is
reproducing these laws as accurate as possible. This chain is called computational
simulation: producing data whose observation would lead to the same model as
observation from nature. The production of such data is the task of an algorithm
whose output should be nearly equivalent to a series of measurements underlying
the original model to simulate reality most accurately. Ensuring this similarity is
done by choosing appropriate numerical methods. Therefore one can say computer
science meets physics linked by mathematics in simulations.
The mathematical model of fluid motion can be derived in two alternative ways.
First is obtained from the kinetic theory which treats the fluid as consisting of
molecules whose motion is governed by the laws of dynamics. With this theory it is
attempted to derive macroscopic behavior from laws of mechanics and probability
theory.
To interpret the fluid as a continuum which means to omit discrete particles leads
to the second approach. This is subject of this diploma thesis.
Both theories lead to the Navier-Stokes equations which is a partial differential equa-
tion and describes the motion of fluids.
The continuum method holds as long as the microscopic scale is negligible compared
to the smallest physical length scale of the flow field. Therefore kinetic theory on
the other hand is at least useful if mean free path cannot be ignored like in rarefied
gases.
Before going further, a short excursion to computational computer science is done in
order to understand the implementation differences of these two theories. Comput-
ing power5 continuously arises and is still following Moore’s law. Currently, reaching
this goal is done by adding computing cores to processors instead of arising the clock
frequency. This rings in a new age of computational computer science because the
programming paradigm has to change in order to use computing power of mas-
sively parallel machines more effectively6. Changing the programming paradigm
implies the necessity of introducing new industry standards for parallel program-
ming purposes which are suitable for different hardware architectures. This has
to be done because future computing converges from two directions: CPU cores
per chip increase while GPUs become more versatile in general purpose computing.
Such general purpose GPU (GPGPU) units are manufactured from NVIDIA and
ATI, their software models are called CUDA (subject of this work) and Stream,
respectively. Uniformed convergence is hopefully achieved by the OpenCL standard
which is an open computing language framework for writing programs with focus
on parallelizing that executes across heterogeneous platforms consisting of CPUs,

4In this case it is hydrodynamic and the derived theory is called fluid mechanics.
5In the sense of floating point operations per second (FLOPS).
6Clusters of single chip machines exist long ago but mainstream multicore chips are new.
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GPUs and other processing units.
The kinetic theory approach seems to be ideal for parallelizing since each molecule
can be mapped to a processing unit which calculates the motion of its own. This
kind is called particle simulation and is an application of a cellular automaton, the
lattice gas automaton. Its continuous counterpart is the lattice Boltzmann automa-
ton which is an implementation of the lattice Boltzmann equation (a molecular
dynamic model).
Continuum method on the other hand is parallelized in a less natural way, domain
decomposition methods are applied to obtain areas which can be mapped to a single
processing unit.
The following work describes the continuum method, provides a numerical method
for solving Navier-Stokes equations, its CPU implementation and discusses its par-
allelizing on NVIDIA GPUs implemented by the CUDA technology.
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2 Derivation of Navier-Stokes equations

This section reviews the essentials of the continuum theory and its link to hydrody-
namics from a physical point of view. It results in the incompressible Navier-Stokes
equations.

2.1 Continuum mechanics

The aim of this subsection is to express a physical fluid as a mathematical model. A
physical fluid consists of a set of matter particles in an area at defined positions in
space R

3. Such an area can be infinite large or have different boundary conditions.
Therefore it is useful to consider only a small volume inside the fluid to describe
its dynamics. In other words: the volume in which fluid flows is controllable. The
particles in such an controllable volume are thought to be infinitesimal volumetric
elements and hence points which union is named control volume Ωt. The index
t ∈ [0,∞) is used to express the time dependence of the fluid area Ωt which never
leaves the domain7

R
n.

To describe the movement in time of a single particle c ∈ Ω0 the function8

xc : [0,∞) → R
n

t 7→ xc(t)

is introduced. In other words xc(t) describes the path of particle c in fluid. Especially
particle position at beginning of the path is xc(0) = c and at time t it is somewhere
in Ωt.
The movement in time of all particles is described by the function Φ:

Φ : Ω0 × [0,∞) → R
n

(c, t) 7→ Φ(c, t).

Expressing Φ in words of xc leads to the definition Φ(c, t) := xc(t).
Especially again - fluid position at beginning is Φ(Ω0, 0) = Ω0 and at time t it is
Φ(Ω0, t) = Ωt.
These definitions enable to express the speed of any fluid particle at fixed time. Let
x ∈ Ωt be the position of particle c at time t. Speed at this point x in fluid x is
given through:

v(x, t) :=
∂

∂t
Φ(c, t).

Before proceeding it is important to be aware of two kinds of reference systems.
The first is called Eulerian reference system. It is an absolute reference system hence
properties are measured from a fixed point in space. For example the speed v(x, t)
of a particle at point (x, t) is measured in an Eulerian reference system.
The second reference system is the Lagrangian. It is a relative reference system

7In progress, general n-dimensional fluid dynamics is considered and the names of physical quan-
tities defined in space R

3 are used to represent more general quantities in space R
n.

8Here the index c of xc links to a fluid particle and is not the partial derivative with respect to
some vector variable c.
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and properties are measured from a moving point in space. For example the rate of
change of temperature along a path of a moving particle.
In conclusion, the aim of deduce the mathematical model of an physical fluid is to
obtain a system of differential equations for the velocity of an arbitrary fluid with
properly chosen boundary conditions.

2.2 Convection and Advection

Practically convection is a mechanism of heat transfer from one place to another. A
physical motivated definition is transportation of a physical property f(x, t) in time
within fluid. The rate of change of this property bounded at a particle on path x(t)
is called convective derivative or material derivative and is mathematically no more
than the total derivative:9

Df

Dt
:=

∂f

∂t
+

dx

dt
· ∇f . (1)

The term dx/dt equals exactly to the previous defined speed v. Equation (1) links
the Lagrangian rate of change in time of property f with the Eulerian and an ad-
ditional term generally called convection. This time independent term v · ∇f is
called convection if f is a vector field and advection if f := f is a scalar field. It is
interesting to note that no rate of change in time of the property f occurs in the
convective term.
Now practically one can clearly speak of heat convection in a fluid if the convective
term doesn’t vanish. Therefore particles have to be in movement and the tempera-
ture needs a gradient different to zero.

2.3 Continuity equations

Physical Conservation Laws in fluid dynamics are used to express the conservation
of a property in a control volume. Such properties are for example the mass density
or the temperature whose conservation laws are known as conservation of mass
respective conservation of thermal energy.
While conservation laws are expressed in integral form their stronger differential
analogue are called continuity equations. These are differential equations of the
general form

∂f

∂t
+ ∇ · (fv) = s (2)

where f is again some property of the fluid, v is the speed describing the flux of f
and s describes the generation (or removal) rate of f .
Navier-Stokes equations are a special case of such a general continuity equation,
derived by developing conservation laws. Before proceeding it is necessary to talk
about a tool which is used for derivation: it is called Reynolds transport theorem.

9The equation make use of the tensor derivative ∇f because f may be a vector.
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Reynolds transport theorem This theorem is used to express the rate of change
in time of the amount of some property f in a time dependent control volume.10

d

dt

∫

Ωt

f(x, t)dx =

∫

Ωt

( ∂

∂t
f + ∇ · (fv)

)

(x, t)dx. (3)

Like equation (1), equation (3) gives a link between the Langrangian and Eulerian
reference system of a control Volume.
The intuitive character of this equation unfolds by applying Divergence theorem:

d

dt

∫

Ωt

f(x, t)dx =

∫

Ωt

∂

∂t
fdx +

∫

∂Ωt

fv · ndS.

Changing the amount of some property in a moving volume is the same as changing
it in a fixed volume plus the amount of the property flowing with speed through the
boundaries of this volume.

Conservation of mass A fundamental physical law is that mass of an isolated
physical system does not change as the system evolves. Since mass of a domain is
calculated by the integral of the density over this domain, the following equation
holds for all t ≥ 0: ∫

Ω0

ρ(x, t)dx =

∫

Ωt

ρ(x, t)dx.

Therefore the rate of change in time of mass has to be zero. Applying transport
theorem (3) leads to:

d

dt

∫

Ωt

ρ(x, t)dx =

∫

Ωt

( ∂

∂t
ρ + ∇ · (ρv)

)

(x, t)dx := 0 ∀t ≥ 0.

This is true for all domains Ωt, therefore the rightmost integrand have to be null
itself and leads to the equation

∂

∂t
ρ + ∇ · (ρv) = 0, (4)

which is obviously a continuity equation in sense of the definition (2).
Important to note that (4) is the general continuity equation for compressible fluids
whereas

∇ · v = 0, (5)

is the special case of incompressible fluids. This is because here the density depends
neither on place nor time.

10The proof works as follows: Applying the rule of Integration by substitution, the integration
domain is transformed with help of the mapping Ω0∋c 7→ xc(t) ∈ Ωt and by multiplying the
integrand with the absolute Jacobian determinant. Now the Leibniz integral rule works since
integration domain is no more time independent and yields a convective derivative term as
integrand. Back substitution leads to Reynolds transport theorem.
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Conservation of Momentum Conservation of momentum is also a fundamental
physical law which states that total momentum of objects in an isolated physi-
cal system is constant in time. Considering two point masses and their momenta
m1(t),m2(t) this law reduces to d/dt(m1 + m2) = 0. Assuming that a force11

−F := d/dtm2 acting on the first point mass, one gets

d

dt
m1 − F = 0. (6)

This is also known as a special case of Newtons second law: the sum of all forces of
a mass point vanishes.
In classical mechanics momentum is a quantity related to an object. If this object is
a point mass, momentum is calculated by the product of its velocity and mass. To
compute the momentum of an object like a control volume in a fluid, one has to sum
up its point masses multiplied by their velocity. Spoken in infinitesimal language,
this statement produces the equation

m(t) :=

∫

Ωt

(ρv)(x, t)dx.

Analogue, point mass forces F are replaced by the integral over the body forces
b(x, t) of the control volume. Therefore equation (6) leads to vector equation

d

dt

∫

Ωt

(ρv)(x, t)dx −

∫

Ωt

b(x, t)dx = 0.

Applying Reynolds transport theorem component-wise to left-hand side and con-
necting the integrands results in12

∫

Ωt

( ∂

∂t
(ρvi) + ∇ · (ρviv) − bi

)

(x, t)dx = 0 ∀
(

i ∈ {1, . . . , n} ∧ t ≥ 0
)

which applies for n-dimensional fluids.
In this position of the derivation, the non-linearity enters. It can be considered as
momentum-convection in the sense of the convection section above.
The last equation is true for all t ≥ 0 and hence leads to vector continuity equation13

∂

∂t
(ρv) + ∇ · (ρvv) = b. (7)

Merging In conclusion, in a n-dimensional fluid14 conservation of mass holds if the
continuity equation (4) for ρ (density) vanish and conservation of momentum holds
if the system of the n continuity equations (7) for ρv (momentum) equals with the
body forces:

∂tρ + ∇ · (ρv) = 0,
∂t(ρvi) + ∇ · (ρviv) = bi ∀i ∈ {1, . . . , n}.

(8)

11The minus sign of −F is used to avoid another minus sign in progress.
12Vector function v splits up into scalar function components v1, . . . , vn.
13The term vv make use of the dyad product.
14Again, a physical quantity (mass) in space R

3 is representative for the n-dimensional case.
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This n + 1 system is the most general form of the Navier-Stokes equations in con-
tinuity form, hence they are a special case of a system of very general continuity
equations.
Left-hand term of equation (7) simplifies with help of product rule and rearranging:

∂t(ρv) + ∇ · (ρvv) =
(

v∂tρ + ρ∂tv
)

+
(

(ρv)∇ · v + v∇ · (ρv)
)

= v
(

∂tρ + ∇ · (ρv)
︸ ︷︷ ︸

=0

)

+ ρ
(

∂tv + v∇ · v
︸ ︷︷ ︸

= D
Dt

v

)

.

The term over the first curly bracket vanishes because conservation of mass and the
second term is no more than a convective derivative of velocity in vector form.
Surprisingly the system of Navier-Stokes continuity equations can be written as a
system of n convective derivatives and the mass continuity equation:

ρ
D

Dt
vi = bi ∀i ∈ {1, . . . , n} ⇐⇒ ρ

D

Dt
v = b, (9)

∂

∂t
ρ + ∇ · (ρv) = 0. (10)

The First equation suggests to be Newtons second law in terms of body forces instead
point forces. Acceleration is modeled by the convective derivative of velocity, in other
words: change of velocity along particle path.

2.4 Body forces

For modeling body forces in a fluid it is necessary to fix the dimension n to three
because assumptions are made which originates from experimental physics.
The general body force b is broken up in two parts: volume forces f and surface
forces σ. Surface forces of a small cube C can be derived via divergence theorem
from volume forces:

∫

C

ρ
D

Dt
vdx =

∫

C

(f + ∇σ
︸ ︷︷ ︸

=:b

)dx =

∫

C

fdx +

∫

∂C

σndS

where σ is a second order stress tensor and hence represented as a 3 × 3 matrix

σ =





σ11 τ12 τ13

τ21 σ22 τ23

τ31 τ32 σ33





with σii normal stresses and τij shear stress components with respect to direction
i, j on the cube surface. Decomposing matrix σ in two terms of the sum15

σ = −





p 0 0
0 p 0
0 0 p



+





σ11 − p τ12 τ13

τ21 σ22 − p τ23

τ31 τ32 σ33 − p



 = −pI + T

15Symbol I is the identity matrix.
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is motivated by introducing pressure p because it is generally a variable of interest.
The first summand tends to force body in changing volume and therefore models
pressure. It is negative mean normal stress and given by p := 1/3(σ11 + σ22 + σ33).
The second summand tends to distort the body: T is called deviatoric stress Tensor
which is a traceless matrix.
This leads to the differential equation for fluid modeling16

ρ
D

Dt
v = −∇p + ∇T + f .

In order to describe real fluids and test correctness of this equation additional hy-
pothesis on form of T is needed to model different fluid families. For example if
tensor T vanishes which means modeling non-viscous fluids17. The resulting formu-
las are called Eulerian equations, often applied to compressible inviscid fluids

ρ
D

Dt
v = −∇p + f .

The following parts of this work deal with viscid fluids where friction is payed at-
tention and therefore T 6= 0. Such fluid families are called Newtonian fluids.
Physical observation of such fluids obtains that stress τ is proportional to velocity
gradient and applying stokes postulates leads to18 19

Tij := µ
( ∂vi

∂xj
+

∂vj

∂xi

)

+ δijλ∇ · v

with µ and λ viscosity coefficients. Substitution in the momentum continuity equa-
tion (7) while preserving vector form results in

ρ
D

Dt
v = −∇p + (µ + λ)∇T (∇ · v) + µ∆v + f

where µ is called dynamical viscosity. Assuming incompressible flow ρ(x, t) := ρ :=
const and using (5) leads to

ρ
D

Dt
v = −∇p + µ∆v + f . (11)

These are the equations for momentum conservation of the Navier-Stokes equations
which are used in progress. These holds for incompressible flow of Newtonian fluids
in R

3.

2.5 Similarity of flows

The point of interest in this section is to compare a large scale problem with a small
scale problem, in other words: what are the conditions to obtain similar flows with

16The pressure is determined up to an undefined additive constant because only the gradient of
the pressure is of interest.

17These are fluids without friction.
18Symbol δij is the Kronecker delta.
19Vector x splits up into scalar components x1, . . . , xn.
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different fluid geometries.
To achieve the comparison, dimensionless values are introduced by dividing dimen-
sioned values with comparable dimensioned values. Such comparable dimensioned
values for a given example of a flow are l∞ which is the scale value of the flow, v∞
is the basic velocity of the flow, p∞ is the basic pressure of the flow and ρ∞ is the
basic density of the flow20:

x̂ :=
x

l∞
, t̂ :=

v∞t

l∞
, v̂ :=

v

v∞
, p̂ :=

p − p∞
ρ∞v2

∞

.

Substitution into incompressible momentum equation (11) and dividing by ρ∞ leads
to21

D

Dt̂
v̂ = −∇̂p̂ +

µ

ρ∞v∞l∞
∆̂v̂ +

l∞
v2
∞ρ∞

f .

This equation is dimensionless with respect to their variables and their solution only
depends on the two fractions. Therefore two flows are similar if these two values are
equal in both flows. This motivates to introduce the dimensionless values22

Re :=
ρ∞v∞l∞

µ
and Fr :=

v∞
√

l∞‖f‖
.

These numbers are called Reynolds number and Froude number, respectively. While
Reynolds number specifies the ratio of inertial forces to viscous forces, Froude num-
ber specifies the ratio of inertial forces to gravitational forces.
Here it comes to a first practical operational area for the Navier-Stokes equations:
with their help one can express criteria (namely the Reynolds and the Froude num-
ber) to build a model of a small scale flow which is similar to an original.
Another operational area which shares the same idea is the content of the following
work: the simulation of a flow which is similar to a possibly unknown original flow.
The following equation system shows the variant of the Navier-Stokes equations
which is used in progress:

D

Dt
v = −∇p +

1

Re
∆v + g, (12)

∇ · v = 0. (13)

Gravity forces are substituted with

g :=
1

Fr2ρ∞

f

‖f‖
.

It deals with dimension n := 2 and works for incompressible Newtonian fluid families.
In component-wise form vector v is split up into components u and v, g into23 gx

and gy and x into x and y. Thus the system simplifies to24:

∂

∂t
u +

∂

∂x
(u2) +

∂

∂y
(uv) −

1

Re

( ∂2

∂x2
u +

∂2

∂y2
u
)

+
∂

∂x
p = gx, (14)

20Pressure comparison differs because of the undefined additive pressure constant.
21The operators ∇̂ and ∆̂ work with respect to x̂.
22The Euclidean norm ‖f‖ is the length of the vector f .
23Here the index of the variables gx respectively gy do not present a partial derivative.
24Simplifying make use of mass continuity equation to convert momentum continuity equations.



2 DERIVATION OF NAVIER-STOKES EQUATIONS 15

∂

∂t
v +

∂

∂y
(v2) +

∂

∂x
(uv) −

1

Re

( ∂2

∂x2
v +

∂2

∂y2
v
)

+
∂

∂y
p = gy, (15)

∂

∂x
u +

∂

∂y
v = 0. (16)

This is a system of three differential equations in the unknown variables u, v and p
over a bounded domain of place and time: Ω× [0, T ], Ω ⊂ R

2 and [0, T ] ⊂ R. First
and second equations are nonlinear in u and v and variable p is determined up to
an additive constant as mentioned in subsection 2.4 Body forces.
These equations are in the following used to develop a numerical algorithm which
gives an approximation of the exact solution.
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3 Numerical Approach

This section provides a detailed derivation of the numerical scheme (presented as an
algorithm) to approximate the solution of the Navier-Stokes equations.

3.1 Finite difference method

The typical goal of numerical mathematics is to approximate the solution of differ-
ential equations with methods which are controllable, by meaning to be aware of
the error size with respect to the exact solution. The Finite difference method for
example is a numerical method, where finite differences are used to approximate
derivatives. In progress the notation for partial derivatives fx is omitted in order
to use sub-indexes either as discretization points or domain variables to distinguish
vector components25.

Taylor Theorem Finite differences can be derived from the Taylor theorem applied
to a function of which the derivation is in demand. At First, finite differences are
demonstrated in a one-dimensional domain which is given by [0, xend] ⊂ R. This
domain is discretized by division in imax parts of length h, bounded by the points

xi := ih, i ∈ {0, . . . , imax}.

A Function f over this domain is given by26

f : [0, xend] → R, f ∈ Cm([0, xend]).

The Taylor theorem gives a sequence of approximations for this function f at a
special point. Because the error of one of these approximation is given by Lagrange
or Cauchy form, it becomes clear that the remainder term of this sequence, chopped
at some member m, can be written in Big-O-Notation. The following equations
evaluate f via Taylor at grid point xi+1 and xi−1:

f(xi+1) =

m∑

k=0

hk

k!

dk

dxk
f(xi) + O(hm+1) (T1)

f(xi−1) =
m∑

k=0

(−h)k

k!

dk

dxk
f(xi) + O(hm+1). (T2)

Equation (T1) leads to forward difference quotient in point xi

d

dx
f(xi) =

f(xi+1) − f(xi)

h
︸ ︷︷ ︸

=:

[
df

dx

]f

i

+O(h).

25This is the case for gx, gy, nx, ny, hx, hy, and ht. Partial derivative operator ∂x is not affected
and used as usual.

26The set Cm(D) consists of functions which are m-times continuously differentiable on D.
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Equation (T2) leads to backward difference quotient in point xi

d

dx
f(xi) =

f(xi) − f(xi−1)

h
︸ ︷︷ ︸

=:

[
df

dx

]b

i

+O(h).

Subtraction of equation (T2) from (T1) leads to central difference quotient in point
xi

d

dx
f(xi) =

f(xi+1) − f(xi−1)

2h
︸ ︷︷ ︸

=:

[
df

dx

]c

i

+O(h2).

Adding equation (T1) and (T2) leads to second order central difference quotient in
point xi

d2

dx2
f(xi) =

f(xi+1) − 2f(xi) + f(xi−1)

h2
︸ ︷︷ ︸

=:

[
d2f

dx2

]c

i

+O(h2).

Now, a two-dimensional domain is considered: domain [0, xend] × [0, yend] divided
by a grid in imax parts of length hx in x-direction and in jmax parts of length hy in
y-direction, bounded by the mesh points (xi, yj):

xi := ihx, i ∈ {0, . . . , imax} and yj := jhy, j ∈ {0, . . . , jmax}.

The function f is now defined on this two-dimensional domain [0, xend]×[0, yend] ⊂ R

f : [0, xend] × [0, yend] → R, f ∈ Cm([0, xend] × [0, yend]).

In order to apply finite difference method to Navier-Stokes equations over a two-
dimensional domain it is sufficient to consider two points: Firstly substitute the
differential operator d in the Taylor series with ∂ and take care to multiple variables.
Secondly discretize the Laplacian derivative ∆f = fxx + fyy which is no more than
the sum of two partial second order finite differences:

[∆f ]i,j :=
f(xi+1, yi) − 2f(xi, yi) + f(xi−1, yi)

h2
x

+
f(xi, yi+1) − 2f(xi, yi) + f(xi, yi−1)

h2
y

.

Convection terms Finite difference discretization of convection-terms of the form27

k∂f/∂x potentially leads to stability problems if the lattice is too rough. Therefore
many methods exists to handle oscillations caused by these stability problems. For
example the Upwind-Discretization where the central difference quotient is replaced
by either forward or backward difference quotient - depending on the sign of f . An-
other possibility is the Donor-Cell scheme often used with convection terms of the
form28 ∂(kf)/∂x. This scheme works in the way that u is given at grid points and
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fi−1 fi fi+1ki−1/2 ki+1/2

Figure 1: Discretization of Donor-Cell scheme.

values of k in the middle of these grid points (Figure 1).
Donor-Cell scheme discretization as finite differences of convective term ∂(kf)/∂x
at point xi:

[∂(kf)

∂x

]dc

i
:=

1

2hx

(

ki+1/2(fi + fi+1) − ki−1/2(fi−1 + fi)

+ |ki+1/2|(fi + fi+1) − |ki−1/2|(fi−1 − fi)
)

.

Approximation error of Donor-Cell is larger than central difference quotient therefore
mixing both:

[∂(kf)

∂x

]m

i
:= (1 − γ)

[∂(kf)

∂x

]c

i
+ γ
[∂(kf)

∂x

]dc

i
.

Parameter γ ∈ [0, 1] determines the weight-proportions of the mix.

3.2 Numerical Solution of Navier-Stokes equations

This chapter explains the details of a numeric algorithm to solve the two-dimensional
Navier-Stokes equations derived in the last chapter. This numerical solution should
sufficiently approximate u, v and p which are the unknowns over a bounded domain
of place and time: Ω× [0, T ], Ω ⊂ R

2 and [0, T ] ⊂ R. To achieve a proper approxi-
mation an algorithm is derived which make use of discretization of this domain and
applies the finite difference method to the analytic derivatives.
The structure of this chapter equals with the structure of the algorithm, with addi-
tional derivation information of the steps. A first overview of the derivation is given
by the following sequence:

• Discretization in time of equations (14), (15) and (16) yields to recursive equa-
tion for velocity.

• Pressure is required in order to calculate velocity field in next time step: con-
vert resulting equations into a Poisson equation for pressure.

• Discretization in place of Poisson equation to obtain system of linear equations
for pressure.

• Calculate new velocity field.

The non-linearity remains in the time discretization.

27Variable k is a function of x.
28Applying product rule gives two convective terms.
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3.2.1 Discretization in time

Time loop The time domain [0, T ] ⊂ R is divided in N equidistant parts of length
ht which define the discretization grid:

tn = nht, n ∈ {0, . . . , Nht}.

Evaluating equation (14) and (15) in these time points requires to express the time
derivation as difference quotient which is done with forward finite differences29:

[
∂u

∂t

]n

=
u(n+1) − u(n)

ht
,

[
∂v

∂t

]n

=
v(n+1) − v(n)

ht
.

Substitution in the Navier-Stokes equations with attention evaluating all terms at
time tn and rearranging gives

u(n+1) =u(n) + ht

(
1

Re

(

∂xxu
(n) + ∂yyu

(n)
)

− ∂x(u
(n)u(n)) − ∂y(u

(n)v(n)) + gx

)

+ ht

(

∂xp
(n) + O(ht)

)

,

v(n+1) =v(n) + ht

(
1

Re

(

∂xxv
(n) + ∂yyv

(n)
)

− ∂y(v
(n)v(n)) − ∂x(u

(n)v(n)) + gy

)

+ ht

(

∂yp
(n) + O(ht)

)

.

This is an explicit scheme in time but implicit schemes allow bigger time steps. For
this reason the last equations are modified to be time implicit in pressure. This is
done by evaluate the pressure at time tn+1. It is allowed because developing the
partial derivative of pressure via the Taylor theorem gives an expression as

∂xp
(n) = ∂xp

(n+1) + O(ht) and ∂yp
(n) = ∂yp

(n+1) + O(ht).

To deal subsequently with short expressions, the definition follows:

F (n) := u(n) + ht

(
1

Re

(

∂xxu
(n) + ∂yyu

(n)
)

− ∂x

(

u(n)u(n)
)

− ∂y

(

u(n)v(n)
)

+ gx

)

,

G(n) := v(n) + ht

(
1

Re

(

∂xxv
(n) + ∂yyv

(n)
)

− ∂y

(

v(n)v(n)
)

− ∂x

(

u(n)v(n)
)

+ gy

)

.

This reduces time discretization of momentum continuity equations to

u(n+1) = F (n) − ht∂xp
(n+1) + O(h2

t ), (17)

v(n+1) = G(n) − ht∂yp
(n+1) + O(h2

t ). (18)

Discretization in time can considered as explicit in velocity and implicit in pressure.
To calculate new velocity field v with this recursion the pressure at time tn+1 must
be known. This is done via a Poisson equation for pressure which is derived in the
next subsection.

29Upper index in round brackets at some function like u means in the progress: u(n) := u(x, tn).
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3.2.2 Discretization in place

In progress the bounded domain Ω is restricted to be a rectangle. Hence it can be
described as Ω = [0, xend] × [0, yend].
To avoid oscillations in pressure u, v and p are evaluated at different discretization
points in the bounded domain Ω. In other words: three grids are in use, one per u,
v and p. The grids are equal-sized and half-mesh-size parallel shifted to each other.
The first grid is for pressure p. With respect to the first grid, the second grid is
parallel shifted to east and the third grid is parallel shifted to north. This is called
a staggered Grid (Figure 3).
Yet another explanation is expressed in mathematical syntax: rectangle [0, xend] ×
[0, yend] is decomposed equidistant in imax columns of length hx and jmax rows of
height hy. The intersection of column i with row j is named cell (i, j), for i ∈
{1, . . . , imax} and j ∈ {1, . . . , jmax}. This defines the grid points (Figure 2)

xi := ihx, i ∈ {1, . . . , imax} and yj := jhy, j ∈ {1, . . . , jmax}.

Now pressure p is evaluated in the middle of the cell (i, j) which corresponds to

0 1 2
. . .

i
. . .

imax − 1 imax imax + 1

0

1

2

. . .

j

. . .

jmax − 1

jmax

jmax + 1

Ω

Figure 2: Domain as cells and boundary cells.

point (xi, yj) and is written as pi,j. Velocity u is evaluated in middle of the east
corner of the cell (i, j) written as ui+1/2,j and v is evaluated in middle of the north
corner of the cell (i, j) written as vi,j+1/2 (Figure 3). Because the velocity is used in
progress mostly at the boundaries of the cells, the variables U and V are introduced:

Ui,j := ui+1/2,j and Vi,j := vi,j+1/2.
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pi,j
ui−1/2,j ui+1/2,j

vi,j−1/2

vi,j+1/2

Figure 3: Cell (i, j) and its associated values.

Hence, expressing ui,j in words of U is done with arithmetic middle

ui,j =
ui−1/2,j + ui+1/2,j

2
=

Ui−1,j + Ui,j

2

vi,j =
vi,j−1/2 + vi,j+1/2

2
=

Vi,j−1 + Vi,j

2
.

These averaging is also done at the boundaries, for example values like U0,j = u1/2,j

are needed at the left boundary of the domain because of u0,j = (U0,j + U1,j)/2.
Therefore a boundary-layer of cells is added around the domain Ω (Figure 2).
Equation (14) and (15) show the derivatives which have to be discretized. Four
derivatives are convective terms which means that they have to be treat separate to
avoid stability problems. This is done via the Donor-Cell scheme. An example is
given below. The other convective terms are treated analogue.

Example: The finite difference quotient of the convective term ∂y(uv) at discretiza-
tion point (i + 1/2, j) is expressed in words of (u, v) and (U, V ), latter with help of
arithmetic middle:
[

∂

∂y
(uv)

]

i+1/2,j

=
ui+1/2,j+1/2vi+1/2,j+1/2 − ui+1/2,j−1/2vi+1/2,j−1/2

hx

=
1

hy

(
Ui,j+1 + Ui,j

2

Vi,j + Vi+1,j

2
−

Ui,j−1 + Ui,j

2

Vi,j−1 + Vi+1,j−1

2

)

.

Figure 4 show all values in the grid which are used to calculate the finite differential
quotient. Applying the Donor-Cell scheme to the convective differential quotient
∂y(u, v):

[

∂y(UV )
]

i,j
:=

1

hy

(
Ui,j+1 + Ui,j

2

Vi,j + Vi+1,j

2
−

Ui,j−1 + Ui,j

2

Vi,j−1 + Vi+1,j−1

2

)

+ γ
1

hy

(
Ui,j+1 − Ui,j

2

|Vi,j + Vi+1,j|

2
−

Ui,j−1 − Ui,j

2

|Vi,j−1 + Vi+1,j−1|

2

)

,

with parameter γ ∈ [0, 1]. If γ = 0 is chosen, the formula equals with central
difference quotient and γ = 1 gives pure Donor-Cell discretization.
It follows the complete list of discretized convective partial derivatives which have
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Ui,j

Ui,j+1

Ui,j−1

Vi,j

Vi,j−1 Vi+1,j−1

Vi+1,j

Figure 4: Values needed for discretization of ∂y(uv) at point (i + 1/2, j).

to be discretized in place in the same manner:

∀
(

i ∈ {1, . . . ,imax − 1} ∧ j ∈ {1, . . . , jmax}
)

:

[

∂x(U
2)
]

i,j
:=

1

hx

((
Ui,j + Ui+1,j

2

)2

−

(
Ui−1,j + Ui,j

2

)2
)

+ γ
1

hx

(
|Ui,j + Ui+1,j |

2

Ui,j + Ui+1,j

2
−

|Ui−1,j + Ui,j|

2

Ui−1,j + Ui,j

2

)

,

[

∂y(UV )
]

i,j
:=

1

hy

(
Ui,j+1 + Ui,j

2

Vi,j + Vi+1,j

2
−

Ui,j−1 + Ui,j

2

Vi,j−1 + Vi+1,j−1

2

)

+ γ
1

hy

(
Ui,j+1 − Ui,j

2

|Vi,j + Vi+1,j|

2
−

Ui,j−1 − Ui,j

2

|Vi,j−1 + Vi+1,j−1|

2

)

,

∀
(

i ∈ {1, . . . ,imax} ∧ j ∈ {1, . . . , jmax − 1}
)

:

[

∂y(V
2)
]

i,j
:=

1

hx

((
Vi,j + Vi,j+1

2

)2

−

(
Vi,j−1 + Vi,j

2

)2
)

+ γ
1

hx

(
|Vi,j + Vi,j+1|

2

Vi,j + Vi,j+1

2
−

|Vi,j−1 + Vi,j|

2

Vi,j−1 + Vi,j

2

)

,

[

∂x(UV )
]

i,j
:=

1

hx

(
Ui,j + Ui,j+1

2

Vi,j + Vi+1,j

2
−

Ui−1,j + Ui−1,j+1

2

Vi−1,j + Vi,j

2

)

+ γ
1

hx

(
|Ui,j + Ui,j+1|

2

Vi,j − Vi+1,j

2
−

|Ui−1,j + Ui−1,j+1|

2

Vi−1,j − Vi,j

2

)

.

In [Hirt 1975] it is recommend to choose

γ ≥ max
i,j

(∣
∣
∣
Ui,jht

hx

∣
∣
∣,
∣
∣
∣
Vi,jht

hy

∣
∣
∣

)

.

The error term of Donor-Cell discretization is greater than pure central difference.
A worst case is given with O(hx) or O(hy). The second order derivatives of equation
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(14) and (15) is also done with central differences. It has to be expressed in terms
of U and V , too. For i ∈ {1, . . . , imax − 1} and j ∈ {1, . . . , imax} holds:

[

∂xxU
]

i,j
:=

Ui+1,j − 2Ui,j + Ui−1,j

h2
x

,
[

∂yyU
]

i,j
:=

Ui,j+1 − 2Ui,j + Ui,j−1

h2
x

.

For i ∈ {1, . . . , imax} and j ∈ {1, . . . , imax − 1} holds:

[

∂xxV
]

i,j
:=

Vi+1,j − 2Vi,j + Vi−1,j

h2
x

,
[

∂yyV
]

i,j
:=

Vi,j+1 − 2Vi,j + Vi,j−1

h2
x

.

Now only the pressure is missing which is discretized in the same way: to discretize
the pressure gradient via central differences in the upper or right cell corner, one
has to define for all i ∈ {1, . . . , imax} and j ∈ {1, . . . , imax − 1}:

[

∂xp
]

i,j
:=

pi+1,j − pi,j

hx
and

[

∂yp
]

i,j
:=

pi,j+1 − pi,j

hy
.

Boundary conditions The discretization in place of velocity needs boundary values

Vi,0, Vi,jmax, i ∈ {1, . . . , imax},

U0,j, Uimax,j, j ∈ {1, . . . , jmax}

and values outside of the domain

Ui,0, Ui,jmax+1, i ∈ {1, . . . , imax},

V0,j, Vimax+1,j , j ∈ {1, . . . , jmax}.

To obtain these velocities, boundary conditions are necessary. Boundary values
vanish for no-slip, free-slip and moving-boundary conditions:

Vi,0 := 0, Vi,jmax := 0, i ∈ {1, . . . , imax},

U0,j := 0, Uimax,j := 0, j ∈ {1, . . . , jmax}.

The values outside the domain, for example V0,j are obtained via averaging:

V1/2,j =
V0,j + V1,j

2
⇔ V0,j = 2V1/2,j − V1,j.

In the case of no-slip conditions V1/2,j has to vanish because velocity at the bound-
ary is zero. This gives V0,j := −V1,j and hence

Ui,0 := −Ui,1, Ui,jmax+1 := −Ui,jmax, i ∈ {1, . . . , imax},

V0,j := −V1,j , Vimax+1,j := −Vimax,j, j ∈ {1, . . . , jmax}.

In the case of free-slip conditions V1/2,j must be equal to V1,j because velocity at
the boundary does not change. This gives V0,j := V1,j and hence

Ui,0 := Ui,1, Ui,jmax+1 := Ui,jmax, i ∈ {1, . . . , imax},

V0,j := V1,j , Vimax+1,j := Vimax,j, j ∈ {1, . . . , jmax}.
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In case of moving boundaries V1/2,j has to be constant V̄ because fluid velocity
at the boundary has to equal moving boundary velocity. This gives V0,j := 2V̄ −V1,j

and hence

Ui,0 := 2Ū − Ui,1, Ui,jmax+1 := 2Ū − Ui,jmax, i ∈ {1, . . . , imax},

V0,j := 2V̄ − V1,j, Vimax+1,j := 2V̄ − Vimax,j, j ∈ {1, . . . , jmax}.

Velocity does not change in outflow region. Therefore normal derivation of u and
v vanish which is done in discrete case by

U0,j := U1,j, Uimax,j := Uimax−1,j, j ∈ {1, . . . , jmax},

V0,j := V1,j, Vimax+1,j := Vimax,j, j ∈ {1, . . . , jmax},

Ui,0 := Ui,1, Ui,jmax+1 := Ui,jmax, i ∈ {1, . . . , imax},

Vi,0 := Vi,1, Vi,jmax := Vi,jmax−1, i ∈ {1, . . . , imax}.

Both velocity components at the boundary are given in case of inflow conditions.
Calculation of values out of domain like V0,j can be done by averaging as before.

Discretization of momentum continuity Last step is the substitution of these
derivatives in equation (17) and (18). Giving attention to the staggered grid and
using the advantage of the notation U and V , one obtains:

U
(n+1)
i,j = F

(n)
i,j −

ht

hx

(

p
(n+1)
i+1,j − p

(n+1)
i,j

)

+ O(hx) + O(hy) + O(h2
t ),

for i ∈ {1, . . . , imax − 1} and j ∈ {1, . . . , imax}, (19)

V
(n+1)
i,j = G

(n)
i,j −

ht

hy

(

p
(n+1)
i,j+1 − p

(n+1)
i,j

)

+ O(hx) + O(hy) + O(h2
t ),

for i ∈ {1, . . . , imax} and j ∈ {1, . . . , imax − 1}, (20)

F
(n)
i,j := u

(n)
i,j + ht

(

1

Re

([

∂xxU
](n)

i,j
+
[

∂yyU
](n)

i,j

)

−
[

∂x(U
2)
](n)

i,j
−
[

∂y(UV )
](n)

i,j
+ gx

)

,

for i ∈ {1, . . . , imax − 1} and j ∈ {1, . . . , imax}, (21)

G
(n)
i,j := v

(n)
i,j + ht

(

1

Re

([

∂xxV
](n)

i,j
+
[

∂yyV
](n)

i,j

)

−
[

∂y(V
2)
](n)

i,j
−
[

∂x(UV )
](n)

i,j
+ gy

)

,

for i ∈ {1, . . . , imax} and j ∈ {1, . . . , imax − 1}, (22)

where every variable gets its assignment to cell (i, j) and the discrete derivations
gets their assignment to time tn. Equations (21) and (22) are full determined if the
boundary conditions are set. The discretization error with respect to place is O(hx)
+ O(hy) in worst case scenario because of Donor-Cell.
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Deriving Poisson equation Substitute equation (17) and (18) in momentum con-
tinuity equation30:

0 = ∂xu
(n+1) +∂yv

(n+1) = ∂xF
(n) −ht∂xxp

(n+1) +∂yG
(n) −ht∂yyp

(n+1) +O(h2
t ). (23)

Conversion shows that this equation is a Poisson equation for pressure:

∆p(n+1) =
1

ht

(

∂xF
(n) + ∂yG

(n)
)

+ O(ht), onto Ω.

The question of the kind of the boundary conditions is answered as follows: looking
at equation (17) and (18) raise the idea to use Neumann boundary conditions.
Characteristic of these conditions is that the normal derivative (of the function one
is looking for) is given at the boundary of the domain. This approach leads to
equation31

∇p(n+1)n = ∂xp
(n+1)n1 + ∂yp

(n+1)n2

= −
1

ht

((

u(n+1) − F (n)
)

n1 +
(

v(n+1) − G(n)
)

n2

)

+ O(ht), onto ∂Ω

which has to be true on the boundary of Ω, usually written as ∂Ω. This Method is
called Chorin-Projection-method and described in [Chorin 1968] and [Temam 1969].
Summarizing the results to express the algorithm with the new knowledge:

1. Calculate F (n) and G(n) from u(n+1) and v(n+1).

2. Solve Poisson equation to get p(n+1).

3. Calculate new velocity field (u(n+1), v(n+1))T .

Discrete Poisson equation The discrete sizes of the last paragraph are now used
to discretize the Poisson equation for pressure. Discrete Laplacian derivative for
pressure is obtained in the way which is shown in subsection 3.1 Finite difference
method. The discrete equation is evaluated in a mix at time tn or tn+1 (see equation
(23)) and at place (xi, yj) which means in the middle of the cell (i, j):32

p
(n+1)
i+1,j − 2p

(n+1)
i,j + p

(n+1)
i−1,j

h2
x

+
p

(n+1)
i,j+1 − 2p

(n+1)
i,j + p

(n+1)
i,j−1

h2
y

=
1

ht

(

F
(n)
i,j − F

(n)
i−1,j

hx

+
G

(n)
i,j − G

(n)
i,j−1

hy

)

︸ ︷︷ ︸

=:RHSi,j

+O(hx) + O(hy) + O(h2
t ),

i ∈ {1, . . . , imax} and j ∈ {1, . . . , jmax}. (24)

30Big-O-term does not change after partial derivation because developing u in Taylor series and
applying partial derivative with respect to t to all terms shows the error size is still O(h2

t ).
31Normal vector n split up into scalar components nx and ny.
32The definition of RHSi,j is used subsequently.



3 NUMERICAL APPROACH 26

Omitting the error term O(hx)+O(hy)+O(h2
t ) leads to a system of linear equations

for pressure in imaxjmax unknowns. The system uses the pressure boundary-values

pi,0, pi,jmax+1, i ∈ {1, . . . , imax},

p0,j, pimax+1,j , j ∈ {1, . . . , jmax}.

Furthermore the following boundary values for Fi,j and Gi,j are needed:

Gi,0, Gi,jmax, i ∈ {1, . . . , imax},

F0,j , Fimax,j, j ∈ {1, . . . , jmax}.

Determining these values is done via the discrete boundary condition of poisson
equation:

p
(n+1)
i+1,j − p

(n+1)
i,j

hx
n1 +

p
(n+1)
i,j+1 − p

(n+1)
i,j

hy
n2

= −
1

ht

((

u
(n+1)
i,j − F

(n)
i,j

)

n1 +
(

v
(n+1)
i,j − G

(n)
i,j

)

n2

)

+ O(hx) + O(hy) + O(ht),

∀i ∈ {1, . . . , imax}, j ∈ {1, . . . , jmax} :
(

i = 1 ∨ j = 1
)

.

For example the discretization on the left boundary (formalized as i = 1) where
n = (−1, 0)T gives:

−p
(n+1)
1,j + p

(n+1)
0,j

hx
n1 = −

1

ht

(

− u
(n+1)
0,j + F

(n)
0,j

)

+ O(hx) + O(hy) + O(ht).

Substitution in (24) for i = 1 leads to:

p
(n+1)
2,j − p

(n+1)
1,j

h2
x

+
p

(n+1)
1,j+1 − 2p

(n+1)
1,j + p

(n+1)
1,j−1

h2
y

=
1

ht

(
F

(n)
1,j − u

(n+1)
0,j

hx
+

G
(n)
1,j − G

(n)
1,j−1

hy

)

.

This equation shows a degree of freedom because it is independent of F
(n)
0,j . Therefore

the choice of F
(n)
0,j is arbitrary. If it is defined as F

(n)
0,j := u

(n+1)
0,j it leads to p

(n+1)
0,j =

p
(n+1)
1,j which defines the left boundary value of the pressure. This is done analogous

for the right, top and bottom boundary and hence gives the values:

pi,0 := pi,1, pi,jmax+1 := pi,jmax, i ∈ {1, . . . , imax},

p0,j := p1,j , pimax+1,j := pimax,j, j ∈ {1, . . . , jmax},

Gi,0 := vi,0, Gi,jmax := vi,jmax, i ∈ {1, . . . , imax}, (25)

F0,j := u0,j, Fimax,j := uimax,j, j ∈ {1, . . . , jmax}. (26)

Hence, after installation of these boundary conditions in discretization of Poisson
system for pressure, the modified system is:

ǫE
i (p

(n+1)
i+1,j − p

(n+1)
i,j ) − ǫW

i (p
(n+1)
i,j − p

(n+1)
i−1,j )

h2
x

+
ǫN
j (p

(n+1)
i,j+1 − p

(n+1)
i,j ) − ǫS

j (p
(n+1)
i,j − p

(n+1)
i,j−1 )

h2
y

=
1

ht

(
F

(n)
i,j − F

(n)
i−1,j

hx

+
G

(n)
i,j − G

(n)
i,j−1

hy

)

,

i ∈ {1, . . . , imax} and j ∈ {1, . . . , jmax}.
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Parameter ǫ is defined as

ǫW
i =

{
0 i = 1
1 i > 1

, ǫE
i =

{
1 i < imax

0 i = imax
,

ǫS
j =

{
0 j = 1
1 j > 1

, ǫN
j =

{
1 j < jmax

0 j = jmax
,

and implements the property if the pressure values has to be eliminated because of
boundary or not. Indexes W , E, S and N are in relation to compass points and
refers to the direction of the boundary.

3.2.3 SOR

Solving a system of linear equations Ap = b of size imaxjmax is based on the Gauss-
Seidel method which is an improvement of the Jacobi method. It is an iterative
algorithm to approximate the exact solution p of the linear equation system with p(k)

at iteration step k. An initial value p(k) has to be chosen. See Algorithms 1 and 2 for
Jacobi and Gauss-Seidel method, respectively. A special Gauss-Seidel enhancement
is called SOR method. This stands for successive over-relaxation and is used to
speed up convergence of Gauss-Seidel method, see Algorithm 3.33 Parameter ω is

Algorithm 1 Jacobi

1: for k = 0 to kend do

2: for n = 1 to imaxjmax do

3: p
[k+1]
n := 1

an,n

(

bn −
∑

m6=n an,mp
[k]
m

)

4: end for

5: end for

Algorithm 2 Gauss-Seidel

1: for k = 0 to kend do

2: for n = 1 to imaxjmax do

3: p
[k+1]
n = 1

an,n

(

bn −
∑

m<n an,mp
[k+1]
m −

∑

m>n an,mp
[k]
m

)

4: end for

5: end for

Algorithm 3 SOR

1: for k = 0 to kend do

2: for n = 1 to imaxjmax do

3: p
[k+1]
n = (1 − ω)p

[k]
n + ω

an,n

(

bn −
∑

m<n an,mp
[k+1]
m −

∑

m>n an,mp
[k]
m

)

4: end for

5: end for

33The upper index of p written in square brackets refers to iteration step, not time (which is
written in round brackets).
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called relaxation factor. This factor has to be in the interval [0, 2] and influences
the convergence speed. If ω = 1 is chosen, the SOR method is the same as Gauss-
Seidel. To choose a value smaller than one leads to slower convergence but helps
establishing convergence of divergent iterations. Values greater than one speeds up
the convergence but may lead sometimes to divergence.
Applying the SOR method to the discrete pressure equation leads to Algorithm 4

Algorithm 4 Poisson SOR

1: for k = 0 to kmax do

2: for i = 1 to imax do

3: for j = 1 to jmax do

4: p
[k+1]
i,j = (1 − ω)p

[k]
i,j + ω

ǫO
i

+ǫW
i

h2
x

+
ǫN
j

+ǫS
j

h2
y

(
ǫO
i p

[k]
i+1,j+ǫW

i p
[k+1]
i−1,j

h2
x

+
ǫN
j p

[k]
i,j+1+ǫS

j p
[k+1]
i,j−1

h2
y

−

RHSi,j

)

5: end for

6: end for

7: end for

where34 RHSi,j stands for the right-hand-side of the discrete Poisson equation for
pressure.
The iteration stops either when kmax is reached or when the L2-norm of the residuum

r
[k]
i,j :=

ǫE
i

(

p
[k]
i+1,j − p

[k]
i,j

)

− ǫW
i

(

p
[k]
i,j − p

[k]
i−1,j

)

h2
x

+
ǫN
j

(

p
[k]
i,j+1 − p

[k]
i,j

)

− ǫS
j

(

p
[k]
i,j − p

[k]
i,j−1

)

h2
y

− RHSi,j,

i ∈ {1, . . . , imax}, j ∈ {1, . . . , imax}

drops below an absolute tolerance limit eps. The L2-norm is defined as

||r[k]||2 :=

(
1

imaxjmax

imax∑

i=1

jmax∑

j=1

(

r
[k]
i,j

)2
)1/2

. (27)

For calculating p(n+1) the SOR algorithm needs initial conditions for k = 0. These
are taken from the pressure calculation at previously time step n. Therefore initial
conditions for pressure p(0) := p

(0)
i,j are needed35. Initial conditions U (0) := U

(0)
i,j and

V (0) := V
(0)
i,j are also needed36 because of the term RHS(0).

This may lead to a problem: the matrix of the system (24) is singular because
of Neumann boundary conditions for pressure. To obtain a solution, the right-
hand side of the system has to be in the image of the matrix. This solution has a

34This was defined in System (24).
35Identical initial conditions are chosen for all i ∈ {1, . . . , imax}, j ∈ {1, . . . , imax}.
36Again, identical initial conditions are chosen for all i ∈ {1, . . . , imax}, j ∈ {1, . . . , imax}.
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degree of freedom (corresponding to pressure) which is determined up to an additive
constant37. If the velocity field at time tn does not satisfy the continuity equation38

the pressure values became unphysical.
In [Griebel 1995] it is written about numerical experiments which show that the
problem is manageable if following is done before each iteration step in the SOR:39

p
[k+1]
i,0 = p

(k)
i,1 , p

[k]
i,jmax+1 = p

[k]
i,jmax

, i ∈ {1, . . . , imax},

p
[k+1]
0,j = p

(k)
1,j , p

[k]
imax+1,j = p

[k]
imax,j, j ∈ {1, . . . , jmax}.

Concurrently the SOR has to be modified by setting all ǫ to one. This defines the
Aalgorithm 5. The residuum has to be adapted too: all ǫ are simply set to one.

Algorithm 5 Modified Poisson SOR

1: for k = 0 to kmax do

2: for i = 1 to imax do

3: p
[k+1]
i,0 = p

[k]
i,1

4: p
[k]
i,jmax+1 = p

[k]
i,jmax

5: end for

6: for j = 1 to jmax do

7: p
[k+1]
0,j = p

[k]
1,j

8: p
[k]
imax+1,j = p

[k]
imax,j

9: end for

10: for i = 1 to imax do

11: for j = 1 to jmax do

12: p
[k+1]
i,j = (1 − ω)p

[k]
i,j + ω

2

h2
x

+ 2

h2
y

(
p
[k]
i+1,j+p

[k+1]
i−1,j

h2
x

+
p
[k]
i,j+1+p

[k+1]
i,j−1

h2
y

− RHSi,j

)

13: end for

14: end for

15: end for

3.2.4 Stability conditions

To guarantee the stability of the algorithm it is necessary to keep the Courant-
Friedrichs-Lewy conditions. They describe how to choose time step with given step
sizes in place:

2ht

Re
<

(
1

h2
x

+
1

h2
y

)−1

, |umax|ht < hx, |vmax|ht < hy.

Based on this, the length of the time step at tn is adapted to the velocity40:

h
(n)
t := τ min

(

Re

2

(
1

h2
x

+
1

h2
y

)−1

,
hx

|u
(n)
max|

,
hy

|v
(n)
max|

)

. (28)

37Shown in subsection 2.4 Body forces.
38Especially at the beginning if choosing initial conditions for a given domain is difficult.
39For pressure values p(k) out of the domain SOR is asking only for east respectively north values.
40Because of its time character h

(n)
t is simply called amplitude at time n in progress.
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Parameter τ is a safety factor out of the interval (0, 1] and u
(n)
max or v

(n)
max is defined

as the maximum of all u
(n)
i,j or v

(n)
i,j in the domain.

3.2.5 Summary

In conclusion, the numerical scheme to solve the Navier-Stokes equations is shown
in Algorithm 6.

Algorithm 6 Computational fluid dynamics

1: t := 0, n := 0, set initial conditions U
(0)
i,j , V

(0)
i,j , p

(0)
i,j

2: while t < tend do

3: set amplitude h
(n)
t {equation (28)}

4: set boundary conditions for u and v
5: set F

(n)
i,j , G

(n)
i,j {equations (21),(22) and boundary conditions (26), (25)}

6: set RHS
(n)
i,j {defined in system (24)}

7: k := 0
8: while k < kmax ∧ ||r[k]|| > eps do

9: apply kernel of SOR {algorithm 5}
10: set ||r[k]|| {equation (27)}
11: k := k + 1
12: end while

13: set U
(n+1)
i,j , V

(n+1)
i,j {equations (17),(18)}

14: t := t + h
(n)
t , n := n + 1

15: end while
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4 CPU Implementation

To code a numerical algorithm, one is well-advised keeping following programming-
paradigm in mind: Make run, make fast, make good! The meaning is nearly self
explaining. First challenge is to make the algorithm run in code whereas less atten-
tion is given to speed and form while run-time. After achieving functionality the aim
is to provide the code with pure functionality without too much overhead: making
fast - speed up in run-time. Next field of attention is given to the look: making code
readable - inserting comments and making sure the output has an attractive form.
This paradigm can also be interpreted as form follows function, a popular principle
in modern architecture and industrial design.
While following this paradigm it makes sense to structure the following sections like-
wise: First is Correctness where the relationship is shown between source code and
Algorithm 6 and therefore the correctness of the implementation. This corresponds
to make run. Second section is Profiling which analyze the performance and mea-
sures the FLOPS of the implementation. Corresponding section of make fast. Third
section is devoted to the output and the graphical representation: Visualization

according to make good.
Last but not least a section Validation exists where the code is demonstrated at
some suitable test cases and compared with the results of existing CFD implemen-
tations to proof the correctness by experiments.
The source code is appended on a mini CD which also includes a compiled version
for x86 64 PC architectures41.

4.1 Correctness

This section describes the implementation of the Algorithm 6 in the programming
language C. To proof the functionality of the implementation with respect to what
it should do, a one-to-one mapping of the source code and the Algorithm 6 is pre-
sented.
Writing in C implies that the algorithm is coded in a procedural and serial language.
The source code is split into several procedures providing clarity and module-like
flexibility. The implementation of each line of Algorithm 6 is explained in detail be-
low. Numbering refers to the line numbering of the algorithm and therefore provides
a mapping-like unique correspondence of implementation and algorithm.

[Line 1] Declaration and initialization of all variables: Following values are read
while run-time from an external text file with procedure READ PARAMETER:

x end := xend, y end := yend, imax := imax, jmax := jmax,

t end := tend, tau := τ,

itermax := kmax, eps := eps, omg := ω,

gamma := γ, Re := Re, GX := gx, GY := gy,

UI := U (0), VI := V (0), PI := p(0).

41A NVIDIA G200 chip is also required in order to fulfill purposes in subsequent section GPU

Implementation.
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The velocity U and V , the pressure P , F , the variables G and RHS are implemented
via two-dimensional arrays. These are dynamically allocated with respect to domain
size.

U[i][j] := Ui,j, V[i][j] := Vi,j, P[i][j] := pi,j,

RHS[i][j] := RHSi,j, F[i][j] := Fi,j, G[i][j] := Gi,j.

The following values are declared while run-time with values:

t := t := 0, n := n := 0, delt := ht, res := ||r[k]||.

Procedure INIT UVP fills arrays U, V and P with the initial values UI, VI and PI.

[Line 3] Procedure COMP DELT is responsible to compute the amplitude ht respec-
tive h t in source code. It calculates the maximum of each U and V and determines
the minimum of equation (28).

[Line 4] As mentioned in the section about boundary conditions, the domain has
to be rectangular. Furthermore the implementation is restricted to have only one
kind of boundary conditions at each boundary. Therefore the variables b W, b O, b S

and b N are used to store information about the kind of the boundary condition. The
variables are arrays with two fields. The information stored in field one is an integer
out of {1, 2, 3, 4, 5}. One means no-slip, two is free-slip, three is moving-boundary,
four is outflow condition and five is inflow condition. The second field is used to
store additional information needed by moving-boundary and inflow condition42.
Procedure SETBCOND distinguishes between these cases and assigns the velocity on
their boundaries appropriate values.

[Line 5] Computation of auxiliary variables F (n) and G(n) concerning to F and G.
All difference quotients of u and v with respect to place are inserted in these fields.
This is done by the procedure COMP FG.

[Line 6] Computation of right-hand side RHS of Poisson pressure equation. This
is done by the procedure COMP RHS.

[Line 7-12] The implementation of the Poisson pressure equation solver is the
procedure POISSON. Every iteration the pressure boundary conditions are adapted.
New pressure values are calculated and the residual is computed.

[Line 13] Computation of the new velocity field U and V. This is done by ADAP UV.

42This additional information is the velocity of moving-boundary respective inflow stream.
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4.2 Profiling

Optimizing source code with respect to speed up execution at run-time is mainly
done in two ways: At first introducing auxiliary variables per procedure to avoid
repeatedly calculation of the same arithmetic terms and to provide the compiler
using the cache of the processor. This leads to less calculation time with the cost of
more memory usage.43 Since the auxiliary variables are no big arrays44 it does not
affect the memory usage noticeably.
The second approach is avoidance of calling math-functions from the C library. This
is done because it is an cost intensive operation to call the mathematics function
pow() from the math.h library for example.
Consequence of these optimizations is that the source code only consists of a minimal
set of native arithmetic operations. Because of the mapping given in the subsection
4.1 Correctness, the arithmetic operations of the implementation corresponds to the
arithmetic operations in the Algorithm 6 but differs in general because of the de-
scribed saving of operations.
To determine the performance of the implementation, the amount of the floating
point operations (FLOP) in the code is related to time. This gives a criterion which
enables to bench the code with other implementations. Another point of view is to
determine the performance of the system where the code is executed. In this sense
the code acts as a special benchmark tool similar to general ones like LINPACK.
Table 1 gives an overview of how much FLOP are used in each procedure per time
step. Variable Kn refers to the number of iterations of the SOR method at time
tn. The table shows that the major part of the FLOP depends on the SOR iter-
ations because of the factor Kn. Therefore the FLOP estimation O(Knimaxjmax)
holds. To ensure the performance of the implementation is as expected, the GNU

Table 1: FLOP per procedure

Procedure FLOP Cost

COMP DELT 2(imax + 2)(jmax + 2) + 12 O(imaxjmax)
SETBCOND 4(imax + jmax) O(imax + jmax)

COMP FG 7 + 53
(

(imax − 1)jmax + imax(jmax − 1)
)

O(imaxjmax)

COMP RHS 3 + 6imaxjmax O(imaxjmax)
POISSON 11 + Kn(3 + 22imaxjmax) O(Knimaxjmax)

ADAP UV 2 + 3
(

(imax − 1)jmax + imax(jmax − 1)
)

O(imaxjmax)

profiler gprof is used. Table 2 shows profile results of the lid-driven cavity problem.
In standard case the fluid is contained in a square domain with no-slip boundary
conditions on three sides and moving-boundary conditions on one side. Fluid pa-
rameters are Re = 1000 and velocity of moving boundary ū = 1. The discretization
grid size is 128 × 128 and tend = 8. As expected from Table 1, procedure POISSON

43This method saves arithmetic operations in both senses: it saves the value of the operations in
memory and leads to a lesser amount of operations.

44Every value of the stencil is mapped to an auxiliary variable.
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Table 2: Profiler results.

Procedure CPU Seconds Percentage

POISSON 251.03 96.51
COMP FG 6.65 2.56
ADAP UV 1.14 0.44
COMP RHS 0.80 0.31
COMP DELT 0.55 0.21
SETBCOND 0.03 0.01

takes most of time45 followed by COMP FG and ADAP UV. The CPU time proportions
of the most busiest procedures also indicate the correctness of the implementation
due to its performance.
At last Table 3 shows the real FLOPS performance at one core of an Intel Quad-core
Xeon 2.0GHz processor with respect to different grid granularity.

Table 3: Intel Xeon 2.0GHz FLOPS.

Grid Size Mega FLOPS

64 × 64 380
128 × 128 389
256 × 256 383
512 × 512 386

4.3 Visualization

The command-line output during run-time shows some facts about the state of the
execution. That is, the number of time iterations, Poisson iterations, elapsed time
is displayed and the current MegaFLOPs. The resulting approximation of v is
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45According to Amdahl’s law parallelizing of POISSON would lead to a maximal speedup of about
24.
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written in an output file. To view the velocity field in the GNU program gnuplot

is used. The pictures above are also produced with this tool. They present the
lid-driven cavity problem. The fluid parameters are Re = 1000, velocity of moving
boundary ū = 1 and grid size of the area is 128×128. The results of this simulation
coincide with the results of [Griebel 1995].

4.4 Validation

Up to here the CFD code works as expected. To proof that an implementation of
fluid simulation behaves like a real fluid the CFD code is compared to a variety
of popular test cases. These test cases are results of simple physical experiments
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where the fluid behavior is measured as exact as possible. Comparison to these
practical experiments gives information about the authentic nature of the CFD
implementation and therefore is used to validate the code. This validation is done
with many CFD codes and therefore a vast number of extended test cases (with
respect to simple physical experiments) has grown which have a statistical degree
of truth (Wisdom of Crowds). A good set of data for comparison is the data of

Figure 5: Validation of CFD CPU implementation
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CPU CFD 32x32
CPU CFD 64x64
CPU CFD 128x128
CPU CFD 256x256
CPU CFD 512x512

[Ghia 1982] since it includes tabulated results for various of Reynolds numbers.
The only test case presented here is the very popular lid-driven cavity. Figure 5
shows the comparison between the results in [Ghia 1982] and the implementation of
Algorithm 6. The fluid parameters are Re = 1000 and velocity of moving boundary
ū = 1. The result shows the velocity u along the vertical line at x = 0.5. More grid
granularity (of the implementation of Algorithm 8) leads to better approximation
(of the results of [Ghia 1982]).
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5 Domain Decomposition

Domain Decomposition methods provide a very natural way deriving parallel algo-
rithms for the solution of linear systems. The idea is to decompose the domain Ω
of a partial differential equation and after discretization one obtain a linear system
which is also decomposed. It is solved on each domain which leads to computational
advantage because solving many small systems is more cost effective than solving
one large46.
Depending of the decomposition method, the computations of the domains may
does not depend on each other. This enables the according implementation to be
parallelized. In other words: to solve a linear system of equations, an appropriate
domain decomposition method has to be chosen.
The simplest form of such a method is the alternating Schwarz-method which is
called multiplicative Schwarz-method if the grid points of their decomposed discrete
domains match together in the overlapping regions.
Object of demonstration is the linear partial differential equation Lp = f on the
domain Ω with boundary conditions u = b on ∂Ω. For simplicity the domain Ω is
decomposed in two overlapping sub-domains: Ω1 and Ω2. Their artificial boundaries
Γ1, Γ2 are defined as follows: Γ1 := ∂Ω1 ∩ Ω2, Γ2 := ∂Ω2 ∩ Ω1. Solution p is also
divided in parts p1 and p2 with respect of the domains. Same with f1, f2, b1 and b2.
The multiplicative Schwarz-method now works as follows: make an initial guess for
values p0

2 on Γ1. Solve the system

Lpn
1 = f1 in Ω1,

pn
1 = b1 on ∂Ω1 \ Γ1,

pn
1 = pn−1

2 on Γ1.

Use pn
1 to solve

Lpn
2 = f2 in Ω2,

pn
2 = b2 on ∂Ω2 \ Γ2,

pn
2 = pn

1 on Γ2.

Writing the linear system for the discrete problem as Au = f , the two iteration
steps are:

un+1/2 = un +

(
A−1

Ω1
0

0 0

)

(f − Aun),

un+1 = un+1/2 +

(
0 0
0 A−1

Ω2

)

(f − Aun+1/2),

where AΩ1 and AΩ2 are discrete forms of the operator L restricted to Ω1 and Ω2,
respective. This method can be considered as generalization of block Gauss-Seidel
method. Since each step needs values from the other, this method is not usable for
parallelizing.

46At least due to option of parallelizing.
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A slightly modification gives the ability to compute concurrently: evaluation of the
second step at un instead of un+1/2 and adding the two steps leads to

un+1 = un +

(
A−1

Ω1
0

0 0

)

(f − Aun) +

(
0 0
0 A−1

Ω2

)

(f − Aun).

Calculation of the last two terms of the sum does not depend on each other and there-
fore can be done concurrently. As in the multiplicative algorithm, on the boundary
Γ1 the values of u2 are used to compute the system. Same for Γ2. This method can
be considered as generalization of block Jacobi method.
The generalization to an arbitrary number of sub-domains works analogue.
For the purpose of solving the poisson equation over a rectangular domain of equidis-
tant grid points it is sufficient to limit the following considerations to such conditions.
Decomposition is done by dividing Ω with a equidistant grid with sub-domains called
Ωl,m. This means minimal overlapping at the boundaries of each sub-domain. Fig-
ure 6 illustrates the partition (Figure 6a) and the pressure values which are needed
to calculate SOR for a sub-domain (Figure 6b).

Ω1,1 Ω2,1

Ω1,2 Ω2,2

(a) Decomposition of four sub-domains.
Dashed lines represent underlying dis-
cretization grid.

(b) Pressure values needed
for SOR step in a sub-
domain Ωl,m represented
as points.

Figure 6: Decomposition of Ω.

At each domain Ωl,m the Poisson equation for pressure has to be solved in time step
tn. If a boundary of such a sub-domain touches the border of Ω, the corresponding
boundary conditions are treated as usual. At borders which adjoins with another
sub-domain, the boundary values are taken from that domain, according to the
Schwarz-method. This means in time step tn boundary values from time step tn−1

are used.
The discretization described in the subsection 3.2.3 SOR shows which values at the
inner borders are needed for a domain Ωl,m to compute solution of the linear subsys-
tem. The pressure values at the borders has to be exchanged with their neighbors
of the neighbored sub-domain.
Another strategy to obtain parallelizing is: Domain Ω is decomposed as above but



5 DOMAIN DECOMPOSITION 39

the pressure-boundary values of each sub-domain are exchanged in every iteration
step of the SOR algorithm. Therefore in every time step the SOR only hast to be
applied once at every sub-domain.
This method works because it can be developed from the Jacobi method of solving
systems. If Jacobi is used to solve discrete Poisson on Ω, each element p

[k]
i,j can be

computed in parallel at iteration step k. Especially every sub-domain Ωl,m can be
computed parallel, no matter if parallelizing is done inside47. Applying Gauss-Seidel
or SOR inside each sub-domain at iteration step k does not improve convergence rate
in worst case but makes clear that this could be done without loosing convergence in
general. Obviously convergence should be faster by applying SOR in sub-domains
than Jacobi.
After each iteration step of SOR, the pressure values at the borders has to be
exchanged with their neighbors of the neighbored sub-domain according to the Ja-
cobian block method. The residuum is computed in each sub-domain and the norm
of these residuum parts gives the main residuum as break-off criterion of SOR.
Algorithm 7 is based on Algorithm 6 and shows the summary of this approach.

Algorithm 7 Parallelizing Computational fluid dynamics

1: t := 0, n := 0, set initial conditions U
(0)
i,j , V

(0)
i,j , p

(0)
i,j

2: while t < tend do

3: set amplitude h
(n)
t {equation (28)}

4: set boundary conditions for u and v
5: set F

(n)
i,j , G

(n)
i,j {equations (21),(22) and boundary conditions (26), (25)}

6: set RHS
(n)
i,j {defined in system (24)}

7: k := 0
8: while k < kmax ∧ ||r[k]|| > eps do

9: apply kernel of SOR on every sub-domain Ωl,m {algorithm 5}
10: set residuum part r[k] on every sub-domain Ωl,m {equation (27)}
11: compute ||r[k]|| from residuum parts
12: k := k + 1
13: end while

14: set U
(n+1)
i,j , V

(n+1)
i,j {equations (17),(18)}

15: t := t + h
(n)
t , n := n + 1

16: end while

47Again, Jacobi block method is derived.
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6 GPU Implementation

This section modifies the Algorithm 7 to an algorithm which is implement-able on
NVIDIA CUDA capable GPUs. Afterwards the conversion of the obtained algorithm
into programming code is shown and its performance results are presented.

6.1 NVIDIA CUDA

The Compute Unified Device Architecture is a computing architecture developed
by NVIDIA. This architecture enables Graphics Processing Units to execute pro-
gramming code.
Abstractly spoken GPUs are naturally designed to display many pixels on a screen
and to change their colors very fast. To compute the color change an operation is
performed which maps, for example, a three-dimensional environment in a game to
the two-dimensional screen. To do so very fast the GPU tries to compute some pixel
domains at the same time. Therefore GPUs are capable to perform many operations
concurrently. CUDA allows to program these operations with a minimal set of ex-
tensions to C and hence abusing graphic processing capabilities to perform arbitrary
computations on the GPU device. In [NVIDIA CUDA Programming Guide 2.0] this
fact is described as: ”Driven by the insatiable market demand for realtime, high-

definition 3D graphics, the programmable GPU has evolved into a highly parallel,

multithreaded, manycore processor with tremendous computational horsepower and

very high memory bandwidth...”. A consequence is that the GPU is specialized in
data processing instead of data caching and flow control as it is done in CPUs. This
predestines GPUs for number crunching tasks.

GPU Hardware In order to write efficient code for GPUs it is necessary to un-
derstand the hardware architecture. A GPU consists of an array of multithreaded
Streaming Multiprocessors. Each Multiprocessor has eight scalar processor cores,
two special function units for transcendentals, a multithreaded instruction unit and
on-chip shared memory. The Multiprocessor is responsible for scheduling many
threads to its scalar processors. This is done with warps which are groups of 32
threads.
Figure 7 shows the hardware structure of a CUDA GPU device. All Multiprocessors
have global memory access which is the slowest but largest form of memory on such
GPUs. This kind of memory is accessible by all multiprocessors (and their threads)
and by the host. The cost of this universal usability is bad performance compared
to the following types of memory. Each Multiprocessor consist of a parallel data
cache called shared memory which is shared by all scalar processors but is only
accessible by threads within a block48. This kind of cache is much faster accessible
by threads than global memory. By developing performance applications, one is
well-advised to use this type of memory excessive. There are also registers available.
Each scalar processor has a set of local 32-bit registers. Two memory type worth

48Blocks and Thread are keywords which are anticipated here and explained in detail in next
paragraph.
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Global Memory

Multiprocessor 1

Scalar Processor 1 ... Scalar Processor 8

Register 1 Register 2

Shared Memory

Figure 7: Hardware architecture of CUDA.

mentioning but not used further is constant and texture cache.

CUDA Software Model Programming procedures which has to be executed on
the GPU are defined with a C extension and called kernel. Many of such kernels
are executed concurrently. Each running instance is called thread. Threads are
grouped into equal sized three-dimensional blocks which union is called grid.
The grid may be also understood as follows: threads are represented as cubes. Build
a cuboid of threads - this is a block. Build a cuboid of blocks - this is the grid.
This structure of threads, blocks and grid is an abstraction model of the GPU
hardware. Each block is assigned a multiprocessor which control unit divides the
blocks into groups of 32 threads (called warps) and executes them.

Block

ThreadΩl,m

Ω

(a) Ω decomposed in blocks and
threads.

Ωl,m

(b) Relation of grid and domain decom-
position.

Figure 8: Grid, Blocks and Threads.
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CUDA and SOR Each thread is responsible to calculate one step of the SOR
iteration for a sub-domain Ωl,m.49 The grid of the domain Ω is decomposed in equal
sized rectangles and every rectangle consists of the same number of sub-domains.
Each of these rectangles build up a CUDA block. A block (consisting of its threads)
is therefore a collection of neighboring sub-domains which form a rectangular area.
Figure 8a shows the decomposition of the grid of domain Ω in blocks and threads
and Figure 8b clarify the relation to domain decomposition shown in Figure 6.
To improve efficiency the pressure values Pi,j and RHSi,j needed for the blocks
and its values out of block-borders are copied to shared memory (Figure 9). Since

Shared Memory

Global Memory

Figure 9: Copy between shared and global memory.

each block is executed (in general) at different multiprocessors and shared memory
cannot be transferred between them the results of the block-borders have to be
copied back to global memory to be readable by other blocks. Figure 10 shows the
memory transfer from the border values of a block (rectangular area of sub-domains)
to global memory. Neighbored sub-domains in neighbored blocks need these values

Shared Memory

Global Memory

Figure 10: Copy block-borders from shared to global memory.

for next step of iteration50, therefore the transfer of values out of block-borders from
global to shared memory as illustrated in Figure 11 is also done for every block.
After completion of SOR iterations pressure values Pi,j are copied back to global
memory (Figure 9).
The calculation of the residuum is done by parallel computation of the residuum’s
in every sub-domain and is summed up in its blocks. These local residuum’s are
again added together to obtain the global residuum.
This leads to Algorithm 8.

49Sub-domains introduced in section 5 Domain Decomposition.
50Explained in section Domain Decomposition.
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Shared Memory

Global Memory

Figure 11: Copy out-of-border-values from global to shared memory.

Algorithm 8 CUDA Computational fluid dynamics.

1: t := 0, n := 0, set initial conditions U
(0)
i,j , V

(0)
i,j , p

(0)
i,j

2: while t < tend do

3: set amplitude h
(n)
t {equation (28)}

4: set boundary conditions for u and v
5: set F

(n)
i,j , G

(n)
i,j {equations (21),(22) and boundary conditions (26), (25)}

6: set RHS
(n)
i,j {defined in system (24)}

7: copy Pi,j, RHSi,j from host memory to device global memory
8: copy Pi,j, RHSi,j from global to shared memory {figure 9}
9: copy values out of block-borders from global to shared memory {figure 11}

10: k := 0
11: while k < kmax ∧ ||r[k]|| > eps do

12: apply kernel of SOR on every thread {algorithm 5}
13: copy block-borders from shared to global memory {figure 10}
14: copy values out of block-borders from global to shared memory {figure 11}
15: set residuum part r[k] on every thread {equation (27)}
16: compute ||r[k]|| from residuum parts
17: k := k + 1
18: end while

19: copy Pi,j from shared to global memory {figure 9}
20: copy Pi,j from device global memory to host memory

21: set U
(n+1)
i,j , V

(n+1)
i,j {equations (17),(18)}

22: t := t + h
(n)
t , n := n + 1

23: end while

6.2 Implementation

As in the corresponding section for the CPU code the paradigm Make good, make

run, make fast! is used to structure the following subsections into Correctness,
Profiling, Visualization and Validation.
The source code is appended on a mini CD which also includes a compiled version
for x86 64 PC architectures with NVIDIA G200 chip.
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6.2.1 Correctness

Again a one-to-one mapping of Algorithm 8 to the source code is given to show the
correctness of the implementation. The implementation of each line of Algorithm 8
is explained in detail below. Numbering refers to the line numbering of the algorithm
and therefore provides a mapping-like unique correspondence of implementation and
algorithm.

[Line 1-6] No difference to Algorithm 6 and therefore the correctness holds as it
is shown in the CPU version.

[Line 7-20] The implementation of the Poisson pressure equation is the procedure
POISSON CUDA. It contains the definition of the CUDA kernel SOR which is a pro-
cedure that runs on the GPU. This kernel launches the blocks and threads on the
GPU according to execution configuration, which is determined from an external
text file. The SOR kernel contains [Line 8-19] of Algorithm 8. Copy instructions
from host to device of array P and RHS correspond to [Line 7] and vice versa for P

to [Line 20]. These instructions are initiated before and after kernel execution.
The shared-memory parts of P and RHS (corresponding to their block) are stored in
an coherent array51 shared[].

[Line 21] No difference to [Line 13] in Algorithm 6 and therefore the correctness
holds as it is shown in the CPU version.

6.2.2 Profiling

Because parallelizing affects only the SOR algorithm, code around the POISSON CUDA

procedure is equivalent to the serial implementation. The host CPU performance op-
timizations are therefore the same and this subsection is focused on the performance
of POISSON CUDA procedure and SOR kernel. Therefore the program was expanded
to a benchmark mode in which it prints the FLOPS of the pure kernel execution to
standard output.
To achieve high performance in CUDA GPU computing it is necessary to follow the
performance guidelines in [NVIDIA CUDA Programming Guide 2.0]. This turned
out to be the real challenge in programming with CUDA.
Results were achieved using a NVIDIA GeForce GTX260 GPU which is of compute
capability 1.3.

Unrolling is a very effective kind of optimization and means the unrolling of loops.
This is done by explicitly serializing code without using loops. Because every sub-
domain consists of a number of grid elements the SOR algorithm has to iterate
(loop) about every single element. After unrolling, every thread iterates about its
grid elements.
In the source code non-unrolling is done in the following CUDA kernels: SOR 00

51According to [NVIDIA CUDA Programming Guide 2.0] exactly one array can be allocated dy-
namically as shared memory on the GPU.
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and SOR 0. All the other kernels are unrolled and they differ in their optimization
goals (introduced in next paragraphs).

Example: Non-unrolling kernel for a sub-domain of 2 × 2:52

//copy g l oba l to shared memory
// south
f o r ( i n t i =0; i <2; i++) {

shared [ i+vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+ i+varx ) ;
}

Unrolling for the same sub-domain gives:

//copy g l oba l to shared memory
// south
shared [0+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+0+varx ) ;
shared [1+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+1+varx ) ;

In the source code unrolling is done for subdomains up to 4 × 4.

Results of unrolling all loops is shown in table 4. The simulation results were ob-

Table 4: Mega FLOPS unrolling.

Sub-domain FLOPS FLOPS Speedup

size standard unrolling

1 × 1 4, 902 19, 969 4.074
2 × 2 11, 746 25, 428 2.165
4 × 4 12, 136 19, 630 1.618

tained by suppressing residuum calculation. This is done because interrupting the
while-loop before iteration itermax leads to significant bad performance. Probably
the CUDA compiler make large optimizations by unrolling the loop if reaching the
end is certain. Ending all while-loops in the algorithm at itermax does trivially
not effect correctness of calculation results but takes more time. This is in the case
of GPU implementation not very weighty because the GPU calculated part is much
faster than CPU part of the program but is respected later in the comparison of
both version.

Coalescing describes coordinated global memory access which is done by warps.
Technically spoken, optimization by coalescing is achieved if a warp reads a contigu-
ous global memory region. In case of floating point data types this memory region is
128 bytes which is the product of float size and warp length: 4byte × 32 = 128byte.
This also implies that the first read of a thread in memory region has to start at
a multiple of 128. Because the fluid discretization grid is a power of two but the
border adds to this number, an offset of 32 is introduced to the number of columns
from P to achieve coalescing.
Figure 12 shows the sub-array53 of a block with four sub-domains. The Upper left

52The var variables are minor with respect to unrolling.
53The sub-array of the array P is meant, the value of which the algorithm is looking for.
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(b) Reads from rearranged
sub-array P

Figure 12: Coalesced read from Sub-domains of a block.

indexing refers to thread number (equal to sub-domain) while lower right indexing
refers to successive read access within threads. Same colors belong to concurrently
running threads. Because succeeding threads do not read from succeeding memory
addresses in figure 12a this access pattern is not coalesced. By rearranging the array
elements like shown in figure 12b, memory reads are coalesced. Same colors mean
concurrent execution.
In the source code coalescing (and unrolling) is done in the following CUDA kernels:
SOR 22 coal and SOR 44 coal.

Example: Non-coalescing kernel for a sub-domain of 2 × 2:54

//copy g l oba l to shared memory
// south
shared [0+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+0+idx ∗2 ) ;
shared [1+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+1+idx ∗2 ) ;

The global thread-index idx is multiplied with 2 and therefore memory reads cannot
be successive addresses. Coalescing for the same sub-domain gives:

//copy g l oba l to shared memory
// south
shared [0+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+\

( blockIdx . x∗2+0)∗blockDim . x+threadIdx . x ) ;
shared [1+ vars ]=∗(( f l o a t ∗ ) ( ( char ∗)P d+vary)+\

( blockIdx . x∗2+1)∗blockDim . x+threadIdx . x ) ;

The rearranging gives successive read access to global memory per block through
thread Index threadIdx.x.

Table 5 shows the benchmark results of a non-coalesced kernel and a coalesced
one. Like expected, in the 1 × 1-case coalescing does not have an effect because
trivial rearranging.

Occupancy is a dimensionless number which gives information about usage rate
of a multiprocessor. It is calculated by the number of warps running concurrently

54The var variables are minor with respect to coalescing.
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Table 5: Mega FLOPS coalescing.

Sub-domain FLOPS FLOPS Speedup Total

size unrolling coalescing speedup

1 × 1 19, 969 19, 969 1.000 4.074
2 × 2 25, 428 28, 270 1.112 2.407
4 × 4 19, 630 23, 831 1.214 1.964

on a multiprocessor divided by maximum number of warps that can run concur-
rently. While high latency thread instructions executed sequentially, executing other
warps is the only way to hide latencies and keep the hardware busy. This means
low-occupancy multiprocessors cannot adequately hide latency on memory-bound
kernels.
Achieving maximum occupancy is done by following: Firstly, all multiprocessors
have at least one block to execute (better is many blocks run in a multiprocessor).
Secondly, source’s of a block is at most half of available. This affects mainly shared
memory and registers.

Example: First goal is done by a granular discretization in place: grid size 512×512.
The sub-domain size 1× 1 is chosen. Shared memory is needed for array P and RHS

limited on the sub-domains of the block:

2 · BLOCKSIZE X · BLOCKSIZE Y · sizeof(float) ≤ sharedmemory size/2 := 8KB/2

The test-system consists of an NVIDIA GTX260 GPU which has 24 multiprocessors
with 8KB shared memory each. Because BLOCKSIZE X have to be a multiple of 16
(for coalescing reasons) BLOCKSIZE Y is given by 16 since lower equal is respected
and only power-of-two values are considered.

For sub-domains greater than 1 × 1 sharedmemory size hast to multiplied with
sub-domain height and width.
Table 6 shows benchmark results for varying sub-domain and block sizes. In conclu-

Table 6: Mega FLOPS occupancy.

Block size

8 × 4 8 × 8 16 × 1 16 × 2 16 × 4 32 × 1 32 × 2

Sub-

domain

size

1 × 1 19, 109 23, 753 11, 567 19, 791 28, 243 19, 901 28, 807
2 × 2 29, 666 39, 939 16, 440 28, 050 42, 035 28, 243 41, 913
4 × 4 24, 966 19, 969 19, 084 23, 871 18, 896 18, 749 18, 896

sion best performance is obtained by choosing the sub-domain size 2 × 2 and block
size 16 × 4 or 32 × 2.
At last, table 7 shows the real FLOPS performance of combined GPU and CPU
power with respect to different grid granularity on types of GPUs. Test case of this
table is the lid driven cavity with fluid parameters Re = 1000 and velocity of moving
boundary ū = 1.
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Table 7: CUDA accelerated CFD FLOPS.

GeForce GTX260

Grid size Mega FLOPS

64 × 64 5, 035
128 × 128 7, 021
256 × 256 7, 190
512 × 512 7, 002

1024× 1024 6, 847

GeForce 9800GX2

Grid size Mega FLOPS

64 × 64 2, 693
128 × 128 4, 093
256 × 256 4, 201
512 × 512 4, 150

GeForce 8600GTS

Grid size Mega FLOPS

64 × 64 2, 737
128 × 128 3, 365
256 × 256 3, 496
512 × 512 3, 364

Though theoretically peak FLOPS power of GeForce GTX260 and 9800GX2 are
nearly equivalent, GTX260 wins the challenge because optimizations above are done
for devices of compute capability 1.3 whereas 9800GX2 is of capability 1.1.
The peak performance of the implementation running on GPU is about 7 Giga
FLOPS.

6.2.3 Visualization

No visual differences to CPU version since correctness has been proven. GPU im-
plementation is faster in time which is proportional to speedup factor of CPU versus
GPU version.

6.2.4 Validation

Again the results are compared with [Ghia 1982] to have a statistical degree of
truth of the implementation. Figure 13 shows the comparison between the results in
[Ghia 1982] and the implementation of algorithm 8 with different grid resolutions.
Fluid parameters are Re = 1000 and velocity of moving boundary ū = 1. The
results show the velocity u along the vertical line at x = 0.5. As in Section 4 CPU

Implementation more grid granularity (of the implementation of Algorithm 8)
leads to better approximation (of the results of [Ghia 1982]). Comparison with
Figure 5 in subsection 4.4 Validation shows that the CPU approximation is better
than GPU at the same grid resolution. This is due to the fact that the GPU version
is a mix of Jacobi and Gauss-Seidel while CPU is Gauss-Seidel-only (see section 5
Domain Decomposition).
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Figure 13: Validation of CFD GPU implementation.
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6.3 Comparison of CPU and GPU

Since the GPU version does not make use of the residuum calculation due to CUDA
optimization restrictions, comparison of CPU and GPU CFD implementation firstly
is done by FLOPS. Subsection 4.2 Profiling gives 400 MegaFLOPS for CPU and
above measurements 7, 000 MegaFLOPS for GPU. This leads to a speedup of up
to 18 which seems to be realistic with respect to Amdahl’s Law which postulates a
maximal speedup of 24.
Second comparison is done by measurement of the time until the residuum drops
below a fixed limit55 depending on the grid-size. Table 8 shows this comparison
and the speedup. Low speedup at the rough grid resolution 64 × 64 is due to

Table 8: CFD comparison.

Time in seconds Total

CPU GPU speedup

Grid size

64 × 64 74 18 4.1
128 × 128 905 119 7.6
256 × 256 10, 507 1, 812 5.8

less arithmetic density in the kernel which means memory operations cannot be
hidden and became weigthy (cache latency overwhelms). The table shows also that
speedup shrinks if the grid resolution gets higher. The CPU version with grid size
128 × 128 does only 37% of the SOR iterations with respect to GPU thanks to
residuum calculation. With grid size 256×256 the CPU even needs 28% of the SOR

55This limit is detected with the CPU version since the GPU is not able to determine the residuum.
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iterations than GPU. This explains the shrink of speedup while increasing grid size.
In this constellation the GPU advantage is the best if grid size is 128 × 128 which
leads to a speedup of almost 8 of the lid-driven cavity problem.
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7 Conclusion

Reflecting the summary from where this work started is done in the following while
highlighting its results.
Section Introduction has localized the scope of the diploma thesis and moti-
vated the study of continuum theory. This was done in section Derivation of

Navier-Stokes equations for the incompressible two dimensional case, result-
ing in conservation of momentum (Equations (14), (15)) and conservation of mass
(Equation (16)) which are used subsequently.
The Numerical Approach has shown the discretization of these equations in time
(Equations (17), (18)) in order to obtain the velocity field in the next time step.
The time discretization keeps the nonlinear character of Navier-Stokes whereas dis-
cretization in place leads to linear Poisson-equation for pressure whose corresponding
linear system (24) is solved with the SOR method. This has produced the CFD Al-
gorithm 6.
The section CPU Implementation has proved the correctness of the CPU imple-
mentation with respect to the derived CFD algorithm and gives a statistical degree
of truth of the simulation results in comparison to existing CFD implementations.
Benchmark results attained an average performance of 400 Mega FLOPS.
Domain Decomposition methods have given the theoretical background and the
section derived an Algorithm (7) which is parallelized and based on the algorithm
used before.
The central section GPU Implementation has introduced the CUDA concept of
programming NVIDIA GPUs and presented an algorithm (8) which benefits of this
concept. Again, the correctness has been proven and validation has been done. Op-
timization methods were explained in detail and results in a peak performance of
more than 40 Giga FLOPS for the parallelized SOR kernel. The total performance
of the algorithm which makes use of both CPU and GPU is measured with 7 Giga
FLOPS. Comparison of CPU and GPU CFD implementations shows an effective
speedup of almost 20 with ideal configuration options.
The present work has shown that the computation of the Navier-stokes equations
can be accelerated significantly by using GPUs. The speedup factor is at least 20
which has been shown by the simulations. It is the result of parallelizing the SOR
kernel. More speedup could certainly be achieved if more parts of the CFD algo-
rithm get parallelized.
Because CUDA is a very young project and is at present in an early stage of devel-
opment, the adaption of CFD algorithms to use efficiently with CUDA is not yet
easy to implement. This is because many restrictions have to be paid attention to in
order to get a high-performance code. One would say: At present CUDA is rather
looking for suitable applications than applications are suitable to CUDA.
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