
Tuning a Finite Difference Computation for Parallel Vector Processors

Gerhard Zumbusch

Institut für Angewandte Mathematik

Friedrich-Schiller-Universität Jena

Jena, Germany

Email: gerhard.zumbusch@uni-jena.de

Abstract—Current CPU and GPU architectures heavily use
data and instruction parallelism at different levels. Floating
point operations are organised in vector instructions of increas-
ing vector length. For reasons of performance it is mandatory
to use the vector instructions efficiently. Several ways of tuning
a model problem finite difference stencil computation are
discussed. The combination of vectorisation and an interleaved
data layout, cache aware algorithms, loop unrolling, paralleli-
sation and parameter tuning lead to optimised implementations
at a level of 90% peak performance of the floating point
pipelines on recent Intel Sandy Bridge and AMD Bulldozer
CPU cores, both with AVX vector instructions as well as on
Nvidia Fermi/ Kepler GPU architectures. Furthermore, we
present numbers for parallel multi-core/ multi-processor and
multi-GPU configurations. They represent regularly more than
an order of speed up compared to a standard implementation.
The analysis may also explain deficiencies of automatic vec-
torisation for linear data layout and serve as a foundation of
efficient implementations of more complex expressions.

Keywords-finite differences; vectorisation; GPU computing;
cache aware algorithms; automatic tuning

I. INTRODUCTION

We make the following contributions: We consider a sim-

ple Finite Difference numerical discretization scheme for the

solution of differential equations. We propose an interleaved

data layout of the Finite Difference grid points especially

suited for vector instructions based on memory aligned

vector load and store operations. We develop highly tuned

implementations of Finite Difference stencil computations

for single CPUs with SSE and AVX vector instructions

with a single core efficiency of 91% − 98% peak floating

point performance on recent CPU architectures by Intel

and AMD. A parallel OpenCL implementation along the

same lines achieves up to 90%− 92% peak performance on

single Nvidia Fermi GPUs. All numbers are with respect

to the available independent or fused-multiply-add (FMA)

floating point pipelines. Furthermore, we present numbers

for parallel multi-core/ multi-processor (85% − 94% peak

performance) and multi-GPU configurations (75%− 81%).

These may serve as efficient node implementations for even

larger distributed memory parallel systems. We discuss and

compare the contributions of the different tuning techniques,

some of them in contrast to ‘conventional wisdom’ about

efficient GPU code. By an analysis of a simple Finite

Difference stencil, we obtain efficient implementation tech-

niques and upper performance limits also applicable to more

complex numerical expressions.

By the introduction of a new vector instruction set (single

instruction multiple data parallelism) for x86 architecture

CPUs, the vector length increases from 128 bit SSE to

256 bit AVX vectors, i.e. from 4 to 8 single precision

numbers (float). There is a roadmap to even larger vec-

tors. Other CPUs like Intel Larrabee/ MIC provide long

vectors already, in this case 512 bit vectors of 16 floats.

In GPU computing, vector lengths of 16 or 32 floats are

common. They can be combined to virtual vectors of length

256 (AMD) or 1024/2048 (Nvidia) by hardware multi-

threading (simultaneous multi-threading or hyper-threading).

Automatic vectorisation of loop and array expressions in

Fortran and C has been developed successfully for classic

style vector computers. Compiled codes were able to achieve

almost peak performance for vector operands in main mem-

ory or in large vector registers. However, current architec-

ture’s memory, caches or GPU local processor memories

do not provide enough bandwidth for the vector instruction

pipelines any more. Algorithmic modifications are needed to

reduce memory traffic and to feed the vector units by data

placed in registers. Further issues are instruction parallelism

for long pipelines and data parallelism for multiple execution

units, cores, processors and GPUs.

II. TIME STEPPING

A. Model Problem

We consider a one dimensional constant coefficient 3-
point Finite Difference stencil computation of the type

for (t=0; t<T; t++) // iterations/ time
for (i=0; i<N; i++) // space

ut+1
i

= (1− 2r) ut

i + r (ut

(i−1)modN +ut

(i+1)modN )

with spatial index i, left and right neighbours i − 1 and

i+1, and an iteration index t. The coefficients r and (1−2r)
remain fixed and can be treated as constant. Furthermore we

apply periodic boundary conditions, that is ut
i = ut

i+N . The

iteration loop represents an explicit time stepping scheme for

a parabolic equation (heat conduction) or an iterative solver

of damped Jacobi type for linear equation systems.



The stencil requires two add and two multiplication opera-

tions per grid point and per iteration, i.e. four floating point

operations. Processors with independent add and multiply

pipelines need at least two effective cycles per grid point.

Processors with a fused-multiply-add (FMA) pipeline only

need three effective cycles per grid point, namely one add,

one multiply and one FMA. We will call an implementation

‘efficient’, if the measured number of processor instruction

cycles is close to the theoretical number of 2NT respectively

3NT cycles. The floating point performance is calculated on

the base of 4NT operations.

B. Performance of a Standard Implementation

A standard implementation will use two linear stride-1

spatial vectors ut and ut+1 and swaps the role of the vectors

after each time step. Vectorisation can be accomplished

by compilers (Gnu gcc 4.6.2, Intel icc) for common loop

expressions. Alternatively, vector intrinsics can be used in

more difficult cases. With a vector length l, values of index
j = [i, . . . , i+ l−1] are assembled in a vector register. If the

addresses of ut
j and ut+1

j are multiples of l times the size of

float, vector load ut
j and store ut+1

j are said to be aligned.

However, vector loads ut
j−1 and ut

j+1 are now unaligned

and are more expensive with respect to memory traffic.

loop (float *u, float *v, int n) {
u[-1] = u[n-1];

u[n] = u[0];

for (int i=0; i<n; i+=l)

*(vec*)&v[i] = stencil_vec (

load_unaligned (u[i-1]), *(vec*)&u[i],

load_unaligned (u[i+1]));

}

Unaligned instructions in registers are usually not avail-

able and can be constructed by a sequence of operations

implementing a register shift/ rotate. Unaligned memory

access is expensive, if available. Some PowerPC Altivec

vector instruction sets require auxiliary load and register

shift instructions to deal with non-aligned memory access.

Some performance numbers can be found in Figs. 1 and 2

for data placed in main memory, cache, or registers. The

numbers reflect wall clock time with SSE, AVX, and FMA

intrinsics in CPU code and native optimisation (except non

vectorised values)), Nvidia Cuda 4.2, 64 bit Linux.

SIMD computing in registers, with sufficient loop un-

rolling leads to numbers close to peak performance. How-

ever, the computation is based on such small data sets that

the result is usually considered useless. Caches are not fast

enough to fill floating points pipelines. Now, the algorithm

is memory bound. CPU main memory bandwidth throttles

down computation below 6GFlop/s (GF) single and 3GF
double precision, such that instructions improvements like

vectorisation have a limited effect below 10% speedup for

code optimised otherwise. Hence, (automatic-) vectorisation

of a standard implementation is useful for data in cache only.

Figure 1. Performance of time-stepping implementations with respect to
data placement and vector length, in single (back columns) and double
(front columns) precision. Single core Intel Sandy Bridge i7-2600K and
AMD Bulldozer FX-8150.

Figure 2. Performance of time-stepping implementations with respect
to data placement and vector length, single multi-processor, Nvidia Fermi
GTX 480 (front columns, GF100, 32 shader), GT 540M (middle columns,
GF108, 48 shader), and Nvidia Kepler GTX 680 (back columns, GK104,
192 shader).

Vectorisation on GPUs is in fact essential: First, Nvidia

floating point units are organised in vectors of size 32 (warp).

Second, hardware multi-threading breaks down longer vir-

tual vectors into multiple vectors of warp 32. Cached and

un-chached memory vector load and store operations are

blocking for hundres of cycles. Hardware muliti-threading

with large thread numbers help to hide this memory la-

tency. However, computing in memory is again bounded by

4−5.5GF single precision per processor. Note that there are

two versions of the Fermi micro architecture, Cuda compute

capability 2.0 and 2.1. High performance GPUs are based

on the 32 shader model, while later models of lower-end

cards with lower processor numbers feature 48 shaders with

similar compute in memory performance per processor, but

an almost 50% improved compute in register rate, see Fig. 2.

The first generation Nvidia Kepler (compute capability 3.0)
raises the number of shaders to 6 groups of 32, with register

layout and memory performance still comparable to Fermi



Figure 3. Vector load and store instructions can be aligned in memory,
using an interleaved data layout of 4n grid points as vectors of length
l = 4. The boundary ghost node vectors are rotated.

2.0. Computing in register on Kepler GPUs is accelerated

by a factor of three compared to Fermi, but computing in

memory is still comparable.

Note that AMD Bulldozer architecture implements AVX

vectors as a combination of two SSE vectors internally, such

that a single core can issue either two independent SSE

instructions or one AVX instruction per cycle, see [1], [2].

This results in 33.6GF single core peak performance (30GF
measured) for independent add and multiply instructions of

both SSE and AVX type vectors with exclusive access to the

shared floating point unit. Fused-multiply-add instructions

(SSE and AVX vectors) double the performance to 67.2GF
peak, of which 41GF can be achieved by the finite difference

code.

C. Interleaved Data Layout

Intel x86 architecture allows for non-aligned vector load

and store instructions, however with a performance penalty

of higher memory access traffic compared to aligned vec-

tor instructions. GPU architectures can tolerate some non-

aligned instructions, but honor block-wise (coalesced) mem-

ory accesses.

In order to avoid unaligned vector instructions, we change

the data layout from the linear consecutive order to a

permutation thereof, see Fig. 3. Grid points are stored

with an increment of the vector length l. The grid is split

into l pieces, which are interleaved. Using aligned vector

instructions results in standard stencils, but applied to l
different partitions of the grid. The performance in cache

improves, see Fig. 1.

Further code optimisation prefetches the consecutive loads

of ut
j , such that one effective aligned vector load is done

per grid point instead of three. Note the implementation of

periodic boundary conditions.

loop_prefetch (vec *u, vec *v, int n) {
vec u0 = rotate_right (u[n-1]);

vec u1 = u[0];

u[n] = rotate_left (u1);

for (int i=0; i<n; i++) { // unroll space loop
vec u2 = u[i+1];

v[i] = stencil_vec (u0, u1, u2);

u0 = u1; u1 = u2;

}
}

Results are marked as ‘prefetch’ in Fig. 1. Using a 128 bit

or 256 bit SIMD vector data type vec, vector intrinsics are

used to implement stencil_vec (1−2r)u1+ r(u0+u2)

Figure 4. Time-skewing: Space-time slices in the iteration space lead
to data re-use. If two old slices fit into cache, we obtain a cache aware
algorithm.

(with or without FMA) and rotate by a single SSE shuffle

or a sequence of AVX instructions.

The algorithm is memory bound, which can also be

verified by the aid of CPU performance counters with tools

like ‘likwid’ [3]. Note that loop unrolling and data which fit

into cache are essential to the success of vectorisation.

The ratio of register performance to fastest cache/local

memory performance (2 − 2.4) is even worse for GPUs

(4.7− 6.8), see Fig. 2. On GPUs currently there is no direct

counterpart to a CPU cache to improve memory bandwidth.

The GPU caches are designed as hotspot caches instead.

III. SPACE-TIME SLICING

The algorithm so far is memory bound. The performance

is critical for grids larger than cache size. We can transform

this into an instruction bound algorithm by a fusion of

several time steps. There are many ways in the space-

time domain to order the points (i, t), such that the data

dependence is granted. A systematic way uses trapezoidal

shapes constructed of diagonal slices in space-time, called

time-skewing [4], [5], see Fig. 4. This is effective, if at least

two preceding diagonals are placed in fast (cache) memory.

The amount of work of the start-up slices is wasted. Note

that a straightforward implementation trades in load/ store

operations in cache against memory. The improvement is

limited by the ratio of bandwidth of cache to bandwidth of

memory.

A. Wide Space-Time Slices and Vectorisation

The first improvement of time-skewing is to widen the

slices to spade shaped domains in space-time, such that sev-

eral grid points are computed at once, see Fig. 5. Basically

two previous diagonals and two new diagonals have to fit

into fast memory. We obtain an algorithm with two cache

loads and two cache stores, independent of the width w
of the slice and the number of floating point operations.

Wide time-slices feature a ratio of memory transfers to

computation of 1/w. The number of registers is an upper

limit of the slice width for an efficient computation in

register.

Next, we introduce vector instructions in the spade shaped

domains in space-time. Here, again unaligned vector in-

structions are recommended. The modified data layout of

Fig. 3 transforms the grid load and store operations into

aligned instructions. Applied to the time-skewing it can be

re-interpreted as a decomposition into l spatial sub-domains



Figure 5. Time-skewing: Wider space-time slices for larger number of
registers and improved computation to memory traffic ratio.

Figure 6. Decomposition of space-time slices into independent tasks. The
start-up computations of each task re-do computations by a neighbour task
and are parallel overhead.

with time-skewing in each sub-domain, see Fig. 6. An

algorithm with e.g. a 3 grid point wide slice, aligned vector

loads and stores, without outer loop and start-up looks like

this:

slice (vec *u, vec *v, vec *a, vec *b, int m)

{
a[0] = u[0]; a[1] = u[1];

vec u0 = u[2], u1 = u[3], u2 = u[4];

for (int i=0; i<m; i+=2) { // unroll
vec a0 = a[i], a1 = a[i+1];

vec v0 = stencil_vec (a0, a1, u0);

vec v1 = stencil_vec (a1, u0, u1);

vec v2 = stencil_vec (u0, u1, u2);

b[i+2] = v1; b[i+3] = v2;

u0 = v0; u1 = v1; u2 = v2;

}
v[0] = u0; v[1] = u1; v[2] = u2;

}

Initial and final time step grids are named u and v and

temporal storage of space-time diagonals are a and b, which

preferably are placed in cache or fast memory. A complete

implementation adds some code for start-up code to fill

a and boundary conditions. Furthermore a space loop is

needed with a sliding window of u and v together with

swapping the role of a and b. We end up with two temporary

storage vector loads and two vector stores per slice and per

time step, independent on the width of the slice.

B. Parallelisation

The next step of code optimisation is parallelisation.

This is always an option, even for non-optimised single

core code. Memory bounded algorithms may be harder

to parallelise efficiently on shared memory architectures.

Memory bandwidth does not scale. However, in our case

the time slicing algorithm is instruction bound and easy to

parallelise. The concept of Fig. 6 has already be used for

vectorisation.

A distributed memory implementation (message passing)

requires an exchange of start-up data. In Tab. II numbers of

a shared memory OpenMP implementation demonstrate a

Figure 7. Performance as a function of processor numbers. A multi-GPU
implementation with 1 to 4 GPUs with 16 processors each is compared to
4, 8, and 32 core CPU systems.

perfect scaling on some server CPUs, see also Fig. 7. Small

degradations of strong scaling can be observed on consumer

type systems with less scalable main memory. The parallel

memory system can easily sustain the low main memory

demands of the time skewing algorithm.

Note that two AMD Bulldozer cores (one module) share

one floating point unit, such that the parallel speedup of

8 cores i.e. 4 modules is just 4. Experimentally, 8 SSE

enabled cores in 4 modules show minor advantages to 4 AVX

cores, probably due to mapping threads to modules and

cores.

C. GPU implementation

The GPU implementation of the vectorised wide-time-

slice algorithm in OpenCL follows the lines of the parallel

CPU implementation of Sec. III-A. The OpenCL computa-

tional kernel can be translated one to one to Nvidia Cuda and

performs almost identically on Nvidia GPUs. A common

programming pattern in OpenCL (and Cuda) is the use

of local (shared) memory to prefetch data and share data

between threads together with fast synchronisation within a

processor [6]. This way e.g. vector rotate can be easily im-

plemented and we can develop an unaligned vector version

of Sec. III-A. However, local memory is prohibitively slow

compared to registers, see Fig. 2. Note that Cuda compute

capability 3.0 of Nvidia Kepler offers faster vector rotate

(warp shuffle) operations. An alternative way is to implement

the aligned, CPU-like algorithm, with very long vectors.

This is in fact preferable, given the low bandwidth of local

memory [7].

Time-slicing was developed as a cache-aware algorithm

with a fast cache. However, the fast GPU local memory

and the L1 cache are even smaller than the total capacity

of the registers and are not useful in our context. The

large number of GPU registers allows for a large slice

width w, such that computing in device memory (plus

L2 cache) is still acceptable. We have to make sure to

use efficient coalesced, aligned memory transfer only. The

resulting algorithm does not have branch divergence, uses

aligned memory access only, with one working-group per

processor, no local memory and no thread synchronisation.



Table I
WORD SIZE OF DEVICE MEMORY TRANSFERS. TOTAL MEMORY

BANDWIDTH IN GBYTE/S AND PERFORMANCE IN GFLOP/S.

system peak float float2

1/2 GTX 590 1244GF 710.8GF 742.6GF

GF110 Fermi 163.9GB/s 88.1GB/s 95.3GB/s

GTX 680 3250GF 1035GF 1346GF

GK104 Kepler 192.3GB/s 110.3GB/s 143.4GB/s

Figure 8. Interleaved data layout of 4n grid points for coalesced ‘float2’
load and store operations. Vectors length l = 4.

The 63 registers per thread of Nvidia Fermi and first

generation Kepler GPUs allows for a large slice width. Using

all of them limits the number of threads per working group

to 512 on Nvidia Fermi and 1024 on Nvidia Kepler. We

keep the number of grid partitions low and equal to the

number of GPU processors. Hence there is only one job per

processor. Furthermore, the occupancy is 50% at most, again

in contrast to recommended programming patterns. The

start-up overhead of time-slicing is large, due to large vector

length. This can only be compensated by large problem

sizes.

The implementation performs efficiently on Nvidia Fermi

GPUs. However, the efficiency drops substantially on the

first generation Fermi Kepler GPUs, see Tab. I. The device

memory bandwidth does not scale like the floating point

performance for Kepler. The code is memory bound again.

In order to optimise memory bandwidth at low occupancy,

the number of memory load and store operations may

be reduced [8]. For example 64-bit memory accesses by

loads and stores of ‘float2’ values instead of 32-bit ‘float’

values improve the effective memory bandwidth, see Tab. I.

This way a 32-element coalesced vector instruction accesses

256 bytes in a single instruction. Larger memory transfers

like 128-bit ‘float4’ introduce additional overhead and do

not pay off currently.

Note that the interleaved data layout of Sec. II-C is further

permuted such that two consecutive ‘float’ numbers are

stored in one ‘float2’ value and the next pair of values is

l ∗ 8 bytes away, see of Fig. 8 .

D. Multi-GPU implementation

The multi-GPU implementation requires data transfer

between the separate GPU device memories. We use a single

data exchange of size 2T l (vector length l) at the beginning
of the time-slice algorithm in order to fill the start-up part

of the grid. Data transfer goes through main memory and

is initiated by CPU. Cuda and OpenCL have a different

memory model. In the presence of multiple devices, there

does not seem to be a good way to allocate memory on a

specific OpenCL device like in Cuda. However, managing

the OpenCL devices in separate contexts we loose the

capability to transfer data between the devices directly. The

difficult transfers introduces some parallel overhead, visible

in the parallel GPU scaling. Nevertheless, we obtain roughly

2.4TFlop/s on a single PC with four GPU devices.

Similar discussion for distributed memory architectures

have led to improvements of DMA data transfer (’GPUDi-

rect’) between network interface cards and GPUs. Hence it

is possible to fuse MPI message passing with Cuda copy

to the GPU device memory without host memory access on

certain hardware.

E. Parameter Tuning

The resulting algorithm has several parameters, which are

the number of time-steps T in time skewing, the slice width

parameter w which indicates the size of the spade domain,

the grid size, the vector length l (if configurable), and

additional unrolling of the time-loop. Parameters depend on

the vector instructions sets available, its number of registers

and the relative size of (L1) cache. However, we employ

parameter tuning to find the parameter sets.

On x86 platforms, generally a slice width w of 7 points

with 28 flops, 2 loads and 2 stores and 9 registers in space is

optimal due to the limited number of 16 addressable (YMM)

floating point registers, see Fig. 9 (left). Note that there are

larger register files of 144 (Sandy Bridge) or 160 (Bulldozer)

floating point vectors [1], [2], which are used internally for

register renaming due to out of order execution. A smaller

slice width is less efficient due to a lack of instruction

level parallelism and relatively small ratio of instructions

to memory accesses. Larger slices cause register spilling,

which again increases memory traffic. The optimal number

of iterations in Fig. 9 highly depends on the number of

processors involved and the processor’s parameters. Small

iteration counts lead to small gains of the cache-aware space-

time slicing, large iteration counts introduce large start-up

overhead. Furthermore, cache size limits the iteration count,

if temporary data needs to fit into cache. Cache effects are

clearly visible at 250 iterations at the limit of L1 cache size

of 32 kbytes and at 2000 iterations at the L2 cache size

of 256 kbytes on Intel Sandy Bridge. The effect is also

visible at the L1 size of 16 kybtes of AMD Bulldozer at

125 iterations, while the L2 cache is already too large.

A similar account for Nvidia Kepler parameter tuning

is in Fig. 9 (right). There are 63 registers available per

thread, such that the optimal slice width is at 48. This

already includes register spilling of values not needed in the

innermost loop. No cache effects are visible that limit the

number of iterations. Device memory is used as temporary

storage. The iteration count is limited by the increasing

startup-overhead of space-time slicing.

The problem size, i.e. the number of grid points does

influence the efficiency of the code. The finite difference



Figure 9. Performance of the space-time slicing in Flop/s. Numbers of a single core Intel Sandy Bridge i7-2600K processor and a Nvidia Kepler GTX 680
GPU. Performance is shown as a function of the number of iterations T and of the slice width.

Figure 10. Performance as a function of grid size. Multi-core multi
processor configurations compared to a single GPU.

algorithm is linear in the number of grid points. Larger prob-

lems require more computing time such that initialisation

and start-up overhead can be compensated better, see Fig. 10.

Problem size is limited by host or device memory size only.

Larger numbers of processors increase the overhead, which

can be compensated only at larger problem sizes.

GPUs in general involve much processor and thread paral-

lelism, with even larger overhead. If one adds data transfer

to and from a GPU, situation would be worse. However,

we assume that the algorithm is just one building block of a

larger application. Data is already in place and distributed in

the multi-GPU case. A similar assumption is usually true in

the analysis of distributed memory parallel algorithms. The

accelerator programming model, which takes into account

data transfer to and from the GPU does only make sense

for off-loading large amounts of work.

F. Single Precision Results

The performance numbers for optimal parameters are

assembled in Tab. II (left). We find single core performance

well above 90% peak performance single precision, both

with older generation CPUs and SSE vectors and with

current CPUs and longer AVX vectors. GPU and AMD

Bulldozer use FMA instructions (3NT cycles), whereas

other x86 CPUs have independent add and multiply pipelines

(2NT cycles). Data resides in main memory (CPU) or

device memory (GPU). Wall clock times and theoretical

cycle counts are taken.

G. Double Precision Results

Now we consider double precision (64 bit) floating point

arithmetic instead of single precision. In the case of CPUs,

two ‘double’ values fit into a 128 bit SSE vector and 4

values into a 256 bit AVX vector. Arithmetic and memory

vector instructions run at the same speed as in the single

precision case, but operate on half the number of values.

Both theoretical and experimental numbers in Tab. II (right)

are roughly halved.

The situation is completely different in the GPU case. All

‘consumer’ grade GPUs have much less double precision

performance, if at all. For Nvidia Fermi capability 2.0 this

means a reduction factor of 1/8, Fermi 2.1 factor 1/12, and
Kepler 3.0 factor 1/24. The memory performance is still

the same, such that the experimental efficiency at this low

floating point performance is almost optimal and above 97%.

The Nvidia Tesla series based on Fermi capability 2.0
offers much more double precision performance at a reduc-

tion factor of 1/2. However, the double numbers occupy

two 32 bit registers. The optimal slice width w must be

reduced from 48 to 22 for 63 32-bit registers per thread.

This implies a lower efficiency of 78% as in the single

precision case. Note that the numbers already include the

larger device memory, such that the problem size even grows

compared to other Fermi numbers. Furthermore, the Tesla

device offers ECC memory correction. Using this option

reduces the effective memory bandwidth and the available

memory size at the same time substantially, both reducing



Table II
PERFORMANCE OF VECTORISED AND PARALLELISED SPACE-TIME SLICING. NUMBERS IN GFLOP/S (GF) AND RELATIVE TO PEAK PERFORMANCE

AND THEORETICAL CYCLE COUNTS.

configuration peak code ops. cycles peak code ops. cycles

single precision double precision

Intel i7-2600K (Sandy Bridge)

1 core, AVX, 3.8GHz 60.8GF 58.3GF 95.9% 95.9% 30.4GF 27.8GF 91.4% 91.4%

4 cores, AVX, 3.8GHz 243.2GF 215.1GF 88.4% 88.4% 121.6GF 107.6GF 88.5% 88.5%

AMD FX-8150 (Bulldozer)

1 core, AVX FMA4, 4.2GHz 67.2GF 41.3GF 61.5% 92.2% 33.6GF 21.1GF 62.8% 94.2%

4 modules, SSE2 FMA4, 4.2GHz 268.8GF 151.9GF 56.5% 84.8% 134.4GF 76.0GF 56.5% 84.8%

AMD Opteron 6128 (K10)

1 core, SSE2, 2GHz 16GF 14.8GF 92.6% 92.6% 8GF 7.2GF 89.5% 89.5%

4*8 cores, SSE2, 2GHz 512GF 473.5GF 92.5% 92.5% 256GF 230.6GF 90.1% 90.1%

Intel Xeon E5405 (Core)

1 core, SSE2, 2GHz 16GF 15.7GF 98.1% 98.1% 8GF 7.7GF 96.3% 96.3%

2*4 cores, SSE2, 2GHz 128GF 120.5GF 94.1% 94.1% 64GF 59.4GF 92.8% 92.8%

Nvidia GTX 680 (GK104 Kepler)

8*(6*32), 1.058GHz 3250GF 1346GF 41.4% 62.1% 135.7GF 87.9GF 64.8% 97.2%

Nvidia GT 540M (GF108 Fermi)

2*(1.5*32), 1.344GHz 258GF 159.0GF 61.6% 92.4% 21.5GF 14.0GF 64.9% 97.4%

Nvidia GTX 590 (GF110 Fermi)

16*32, 1.215GHz, 1/2 card 1244GF 742.6GF 59.7% 89.5% 155.5GF 103.4GF 66.5% 99.7%

2 devices, 1 card 2488GF 1348GF 54.2% 81.3% 311GF 197.6GF 63.5% 95.3%

4 devices, 2 cards 4977GF 2471GF 49.6% 74.5% 622GF 373.9GF 60.1% 90.2%

Nvidia Tesla M2070 (GF100 Fermi)

14*32, 1.15GHz 1030GF 630.1GF 61.2% 91.7% 515GF 268.9GF 52.2% 78.3%

Nvidia GTX 480 (GF100 Fermi)

15*32, 1.4 GHz 1345GF 804.4GF 59.9% 89.8% 168GF 111.8GF 66.5% 99.8%

the efficiency of the implementation.

IV. RELATED WORK

The problem of optimisation, tuning and vectorisation of

finite difference implementations is quite old, since many

of the early times numerical algorithms were based on

finite differences. However, attempts to optimise for memory

hierarchies, namely main memory and cache, started with

a cache aware block tiling in space-time [9], the intro-

duction of time-skewing [4], [5] and extensions to grid

hierarchies [10] and a cache oblivious space-filling Z curve

in space-time [11].

More recent is the overview [12], which e.g. describes a

3D time-skewing implementation at 37% peak performance

on a 4.4GF peak performance, 2004 AMD Opteron proces-

sor. An automatic tuning of 3D time-stepping stencils on

various double precision 10GF peak AMD and Intel cores

show sequential 1.6GF and 11GF on 16 cores [13]. Another

group [14] mentions 1GF on a 11.2GF peak double precision

Intel ‘Core’ core, and 6.5GF on 8 cores for a 2D problem. A

3D higher order finite difference stencil in time-stepping is

optimised with 130GF on previous generation Nvidia GPUs

with 690GF peak in [15]. A coupled 3D Finite Difference

Implementation on Nvidia Fermi based multi GPU cluster

Tsubame 2.0 is discussed in [16].

V. CONCLUSION

We were able to develop highly efficient parallel, wide,

vectorised time-slice implementations of the Finite Differ-

ence model problem for CPUs and GPUs. All optimisation

techniques had to be combined. Just vectorisation or loop

unrolling or time-slice did not improve the performance

of a standard time-stepping scheme. The result relies on

large numbers of registers to both sustain high processor

performance and to hide main memory latency. Both x86

CPUs with SSE and AVX vectors and current Nvidia GPUs

meet this requirement.

There are many claims comparing CPU and GPU perfor-

mance, see [17]. A fair comparison may be based on a single

PC or a server configuration, see table III. Other comparisons



Table III
COMPARISON CPU AND GPU. FLOP/S.

system CPU GPU ratio

PC multi-core CPU one GPU 1:6.3

server multi CPUs one GPU 1:2.8

GPU server multi CPUs multi GPUs 1:5.2

Table IV
COMPARISON CPU AND GPU. GFLOP/S VERSUS ELECTRIC POWER OR

HARDWARE PRICE OF THE DEVICE (WITHOUT HOST SYSTEM).

metric AMD Intel Nvidia Nvidia

FX-8150 i7-2600K GTX 590 GTX 680

Bulldozer Sandy Bridge Fermi Kepler

GF 151.9 215.1 1348 1346

GF/W 1.22 2.26 3.69 6.90

GF/$ 0.62 0.68 1.93 2.69

take into account price or electric power, with or without a

host system, see table IV. However, it is essential to compare

implementations well tuned for each of the platforms.

Challenging generalisations of the model problem include

two and three dimensional grids, longer, more complex,

higher order, or variable coefficient difference stencils, sys-

tems of equations instead of a scalar value on a grid point

and hierarchies of grids with mesh refinement and multigrid

algorithms. The data access patterns are more complex and

the computational work per grid point increases. Heavy

computation on a grid point is favourable from a perfor-

mance point of view. Time-slices can be generalised to

2D and 3D grid patterns. The question remains, whether

the number of registers and the cache sizes are sufficient.

In this sense, the performance numbers reported here are

probably an upper bound for many of more difficult Finite

Difference schemes. Furthermore, such an efficient single

computing node implementation can be extended to even

larger distributed memory parallel system code.

ACKNOWLEDGEMENT

The authors would like to thank DFG for partial sup-

port under grant SFB/TR7 “gravitational wave astronomy”,

J. Treibig for a pre-release version of the tool “likwid”,

J. Giesen and B. Brügmann for access to the AMD Magny-

Cours and Nvidia M2070 systems respectively.

REFERENCES

[1] L. Gwennap, “Sandy Bridge spans generations,” Micropro-
cessor Report, p. 8, Sep 2010, http://www.mpronline.com.

[2] D. Kanter, “Intel’s Sandy Bridge microarchitecture,”
http://www.realworldtech.com/page.cfm?ArticleID=
RWT091810191937, Sep 2010.

[3] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environ-
ments,” in Proc. PSTI2010, San Diego CA, 2010.

[4] Y. Song and Z. Li, “New tiling techniques to improve cache
temporal locality,” in Proc. ACM SIGPLAN Conf. Program-
ming Language Design Implementation, Atlanta, 1999, pp.
215–228.

[5] J. McCalpin and D. Wonnacott, “Time skewing: A value-
based approach to optimizing for memory locality,” Rutgers
Univ., Tech. Rep. DCS-TR-379, 1999.

[6] B. R. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D. Schaa,
Heterogeneous Computing with OpenCL. Morgan Kauf-
mann, 2012.

[7] V. Volkov and J. Demmel, “Benchmarking GPUs to tune
dense linear algebra,” in Proc. Supercomputing 2008. IEEE,
2008.

[8] V. Volkov, “Better performance at lower occupancy,”
GTC 2010 talk, 2010, http://www.cs.berkeley.edu/∼volkov/
volkov10-GTC.pdf.

[9] G. Rivera and C. Tseng, “Tiling optimizations for 3D scien-
tific computations,” in Proc. Supercomputing 200, 2000.

[10] C. Weiß, “Data locality optimizations for multigrid methods
on structured grids,” Ph.D. dissertation, TU München, 2001.

[11] M. Frigo and V. Strumpen, “Cache oblivious stencil compu-
tations,” in Proc. Supercomputing 2005, 2005, pp. 361–366.

[12] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and
K. Yelick, “Optimization and performance modeling of sten-
cil computations on modern microprocessors,” SIAM Rev.,
vol. 51, no. 1, pp. 129–159, 2009.

[13] S. Kamil, C. Chan, S. Williams, L. Oliker, J. Shalf, M. How-
ison, E. W. Bethel, and Prabhat, “A generalized framework
for auto-tuning stencil computations,” in Cray User Group
Conference, Atlanta, GA, 2009.

[14] M. Stürmer and U. Rüde, “A framework that supports in writ-
ing performance-optimized stencil-based codes,” Universität
Erlangen-Nürnberg, Tech. Rep. 10–5, 2010.

[15] P. Micikevicius, “3D finite difference computation on GPUs
using Cuda,” in Proc. 2nd Workshop on General Purpose
Processing on Graphics Processing Units, GPGPU-2. ACM,
2009, pp. 79–84.

[16] T. Shimokawabe, T. Aoki, T. Takaki, A. Yamanaka,
A. Nukada, T. Endo, N. Maruyama, and S. Matsuoka, “Peta-
scale phase-field simulation for dendritic solidification on the
Tsubame 2.0 supercomputer.” in Proc. Supercomputing 2011.
IEEE, 2011.

[17] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty,
P. Hammarlund, R. Singhal, and P. Dubey, “Debunking the
100x GPU vs. CPU myth: An evaluation of throughput
computing on CPU and GPU,” SIGARCH Comput. Archit.
News, vol. 38, no. 3, pp. 451–460, Jun. 2010.


