Multigrid Methods in Diftpack

Gerhard W. Zumbusch

A/ \/\/\/N

Diffpacls

The Diffpack Report Series
November 22, 1996

SUNTE?

This report is compatible with version 2.4 of the Diffpack software.

The development of Diffpack is a cooperation between

e SINTEF Applied Mathematics,
e University of Oslo, Department of Informatics.

e University of Oslo, Department of Mathematics

The project is supported by the Research Council of Norway through the technology
program: Numerical Computations in Applied Mathematics (110673/420).

For updated information on the Diffpack project, including current licensing conditions,
see the web page at

http://www.oslo.sintef .no/diffpack/.

Copyright (©0 SINTEF, Oslo
November 22, 1996

Permission is granted to make and distribute verbatim copies of this report provided the
copyright notice and this permission notice is preserved on all copies.

Abstract

The report gives an introduction to the multigrid iterative solvers in Diffpack. It
is meant as a tutorial for the use of iterative solvers, preconditioners and nonlinear
solvers based on multigrid methods. The first steps towards this efficient equation
solvers are guided by a couple of examples and exercises. Since multigrid is a recipe
to construct solution algorithms rather than black-box algorithms itself, there is lots
of freedom for the user to tailor the actual solver. Reflecting this fact there are lots of
possibilities to use the appropriate classes in Diffpack. Hence there is much advice
needed not to get started, but also to use the methods efficiently. The exercises are
meant to give some experience needed for applications and questions not covered in
this introductory report.

Contents

1 Introduction

2 Interface

3 My first multigrid solver

3.1 Code

3.2 Number of grids and iterations

3.3 Smoother .

3.4 W-cycle and nested iteration

4 Increasing the flexibility

4.1 Pre- and post-smoother

42 Coarsegridsolver. L

4.3 Semi-coarsening and non-standard refinemento

4.4 Multigrid as a preconditioner oo

4.5 Additive Preconditioner e

5 Nonlinear problems

5.1 Diffpack nonlinear interface L.

5.2 Inexact solver e e

5.3 Nonlinear multigrid o

5.4 Experiments

6 Summary

References

22
27
29
31
32
35

36
36
42
44
56

58

60

Multigrid Methods in Diftpack

Gerhard W. Zumbusch *

November 22, 1996

1 Introduction

The increase of computer power enables larger and larger numerical simulations to be
performed. In the field of partial differential equations, especially in finite elements,
one can easily reach the limits of any given computer. Unfortunately the size of the
simulations cannot grow the same way as the computer memory and performance
grows using standard methods. The bottleneck usually is the solution of the system
of equations. While most operations in finite elements have linear complexity and
are well suited for parallel computing with local communication patterns (like ma-
trix assembly), standard linear algebra has a higher complexity and more expensive
communication patterns. Hence the complexity of linear algebra tends to dominate
any large scale simulation.

This observation leads to the development of several more efficient equation solvers
especially suited for finite element computations. Starting with dense matrix and
banded matrix Gaussian elimination, node ordering schemes for more efficient sparse
matrix Gaussian elimination were developed. The next line of development covers the
use of standard iterative solvers like Gauss-Seidel iteration and conjugated gradients
with some suitable algebraic preconditioning. The equations are no longer solved
exactly, but up to a precision small compared to other errors introduced in the
computation. This also means that there is some responsibility left to the user to
employ a suitable termination criterion for the iterative solver.

This is typical for the path of development: We are leaving simple-to-use black-box
solvers like Gaussian elimination and introduce more flexibility. This also means
more user responsibility for the efficiency of the method. The potential danger is
twofold: The method may be inefficient due to a poor choice made by the user, and
even worse the method may give wrong results due to a too early termination of the
solver.

Since we are still not satisfied with the performance of standard iterative solvers for
large scale simulations, we introduce a divide and conquer strategy: The complexity
of a standard iterative solver is still larger than linear complexity. Even two times
the solution of a problem half the size is cheaper than solving one large problem.
We consider the large problem on different scales and combine the solutions to an

SINTEF Applied Mathematics. Email: Gerhard.Zumbusch@math.sintef.no.

conquer

approximation of the large problems solution. The question now is how to create
coarse scale problems and how to put the solutions of the sub-problems together. We
are constructing iterative solvers or preconditioners for a global problem by using
solvers for smaller problems. There are several strategies to do that.

DDSolver

Multigrid SchwarzDD
R R

(AddMultigrid (Nested Nonl_lnt_ear Sym Add
Multigrid SchwarzDD SchwarzDD

Multigrid
~
lFASMuItigrid (Nested o oarseAddCoarse
FASMultigrid SchwarzDD

Figure 1: Hierarchy of multigrid and domain decomposition methods

The different versions of multigrid methods mainly differ in the way treating the

sub-problems and putting the solutions together. This is a decision left to the user.

It will turn out to be problem dependent. The multigrid method in general is only
a recipe to construct a solution algorithm. Only for some model problems the most

efficient components for these algorithms are known. In full generality there are only

guidelines and hints for a choice of components.

It is just the purpose of this Diffpack tutorial to give some guidance to the use of

multigrid and domain decomposition methods. Of course we will have to explain

how to use the methods in Diffpack first. But beyond getting your own code up

and running, we will discuss several applications. Different types of differential op-

erators, grids and discretizations each lead to a specific choice of an algorithm and -

specific layout of its components. Users writing simulators not covered in these in-
troductory examples may nevertheless find the discussion and the several exercises

useful. The exercises cover questions, which are more general and not restricted to

the specific model. They may be helpful for more advanced simulators. We also refer

to forthcoming related [Zum96a] and more advanced reports [Zum96b).

Since the field of multigrid methods is a field of active research, there are lots of
. reterences

books, conference proceedings and thousands of research papers related. For fur-
ther reading we suggest [Bri87, Joh87, Wes92] and for theory we refer to some of the
literature [Hac85, Bra93]. We also refer to the proceedings of e.g. the “Copper Moun-
tain” [MMMO3] conferences and to some web pages related £tp://na.cs.yale.edu/pub/
mgnet/www/mgnet.html and references therein.

We assume familiarity with some of the basic concepts of Diffpack [BLI6]. We will
use and modify some examples presented in [Lan94]. It may be helpful to have access

to the Diffpack manual pages dpman while reading this tutorial. The source codes
and all the input files are available at $DPR/src/app/pde/ddfem/src/.

For the presentation of the multigrid method we will stick to the notation of Hack-
busch [Hac85]. We will also use some of the examples discussed there. The multigrid
method was originally proposed by Fedorenko [Fed64] and made popular in the
seventies by Brandt [Bra73].

Given a second order differential operator £ and a domain €2, we look for the solution

of

f onQ
g1 onT C 00
g2 on IQ\T

We discretize the problem using finite elements. We denote the finite element space
V; using elements of the size h; (e.g. diameter). We use a family of nested finite

element spaces

VicVaCVz...CV; c HY(Q)

We actually want to compute the solution in the space V; and we solve auxiliary
problems on the coarser spaces to speed up the computation. The multigrid iteration
®,(x,b) on level j with start vector (initial guess) and right hand side b reads like

this
21
22
®,(x,0)

On level 1 we use a direct

Sl(x,b)

el + Ry P 1(0, Ry 51(b— Ljat))

S2(22,b)

coarse grid solver

Figure 2: Multigrid V-Cycle

The definition of two operators is still missing: The smoothing operators

S:V;=V;

as approximate solvers on the grid and the restriction R;;_; and prolongation R;_; ;

operators

Rj;
Rj_1;

Vi

Via

'—>‘/}‘_1
-

as transfer between different grids. The total scheme is also called a V-cycle (just

look at figure 2).

coarse grid

smoother

grid transfer

v-cycle

2 Interface
The Diffpack implementation of the multigrid method is based on the DDSolverUDC

interface. We will explain how to implement the necessary functions.

/*<DDSolverUDC: */
class DDSolverUDC : public HandleId

{
public:
DDSolverUDC () {}
virtual “DDSolwverUDC ();
virtual Spaceld getNoOfSpaces() const = 0;
virtual void setStart (LinEqVector& x, Spaceld space, StartVectorMode start);
virtual BooLean solveSubSystem (
LinEqVector& b, LinEqVector& x, Spaceld space,
StartVectorMode start, DDSolverMode mode=SUBSPACE) = 0;
// return value indicates changes of the solution vector
virtual void residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space);
virtual void matVec (
const LinEqVector& b, LinEqVector& x, Spaceld space);
virtual BoolLean transfer (
const LinEqVector& fv, Spaceld fi,
LinEqVector& tv, Spaceld ti,
BooLean add_to_t= dpFALSE, DDTransferMode=TRANSFER) = 0;
// indicates changes of the solution vector
virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp)
const = 0;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const = 0;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp)
const = 0;
virtual real getStorageSolve (Spaceld space) const = 0;
virtual String comment ();
};

/*>DDSolverUDC: */

The function getNoOfSpaces returns the number of grids j. The function solveSubSystem
implements the smoother S(z,b) on the grid number space. The start argument
may indicate a zero start vector z. A zero start vector simplifies parts of the compu-
tation and is therefore treated separatly. For example multiplying with a matrix by a
zero vector is cheaper than multiplying it by any non-zero vector. Zero start vectors
are quite common, especially if the solver is used as a preconditioner. mode is used
to make a distinction between the pre- S' and the post-smoothing 8% if necessary.
One should be able to compute the residual b — £;2 by the function residual. The

grid transfer is done via the transfer function. It implements a transfer

transfer(f,t) : Vi — V4

In the multigrid case it is only used for the prolongation y —1 — j and the restriction
(or projection) j — j — 1. We also refer to the appropriate manual pages.

We need some enumeration flags to indicate different modes, for the smoothers
DDSolverMode and the common StartVectorMode and DDTransferMode for some
specific transfer operators. For the multigrid method we only need some of the val-

ues. We also use a special type enumerating the grids.

/*<Spaceld:*/
typedef int Spaceld;
/*>Spaceld:*/

/*<DDSolverMode: */
enum DDSolverMode

{
SUBSPACE = 1, // only one solver: coarse solver, symmetric solver ...
SUBSPACE_FWD = 2, // first solver, presmoothing,
SUBSPACE_BACK = 3 // second solver, postsmoothing,
};
enum DDTransferMode
{
TRANSFER = 1, // standard transfer
TRANSFER_NESTED = 2 // higher order transfer for nested iteration
};

/*>DDSolverMode: */

3 My first multigrid solver

We start with the E1lipticl example simulator described in [Lan94]. We want to
extend it to be able to use multigrid. It is a simulator for the Poisson equation on a
uniform grid on a unit square or unit (hyper-) cube.

The header looks like this:!

MultiGrid1

// prevent multiple inclusion of MultiGridi.h
#ifndef MultiGridi_h_IS_INCLUDED
#define MultiGridi_h_IS_INCLUDED

t#tinclude <FEM.h> // FEM algorithms, FieldFE, GridFE etc

#include <DegFreeFE.h> // mapping: nodal values -> unknowns in linear sys.
#include <LinEgAdm.h> // linear systems, storage and solution

#include <MenuUDC.h> // menu system utilities

'you will find the code in MultiGridl/MultiGrid1.h

#include <Store4Plotting.h>// storage tool for later visualization
#include <VecSimplest_Handle.h> // VecSimplest’s needed

#include <DDSolver.h> // DDSolver

#include <DDSolverUDC.h> // interfacing to DDSolver

#include <DDSolver_prm.h> // DDSolver parameters

class MultiGridl : public FEM, public MenuUDC, public Store4Plotting, public DDSolverUDC
{

protected:
// general data:
Handle(FieldFE) u; // finite element field, the primary unknown
Vec(real) linsol; // solution of linear system

// multigrid related data:

int no_of_grids; // multigrid levels

prm(DDSolver) ddsolver_prm;// parameters multigrid solver
VecSimplest (Handle(LinEqSolver)) smooth; // linear solution

VecSimplest (Handle(prm(LinEqgSolver))) smooth_prm;// linear solution parameter
VecSimplest (Handle(LinEqSystemStd)) system; // linear system, storage
VecSimplest (Handle(GridFE)) grid; // finite element grid

VecSimplest (Handle(DegFreeFE)) dof; // trivial mapping here: nodal values
VecSimplest (Handle(prm(Matrix(NUMT)))) mat_prm; // Matrix parameters

VecSimplest (Handle(Proj)) proj; // projection operators

Handle(DDSolver) ddsolver; // multigrid solver

// general data:

Handle(LinEgAdm) 1lineq; // linear system, storage and solution

Handle(FieldFE) error; // the error field (analytical - numerical sol.)
real L1_error, L2_error, Linf_error; // various norms of the error

virtual real f(const Ptv(real)% x); // source term in the PDE

virtual real k(const Ptv(real)% x); // coefficient in the PDE

virtual void f£illEssBC (Spaceld space);// set boundary conditions

virtual void integrands // evaluate weak form in the FEM equations
(ElmMatVec& elmat, FiniteElement& fe);

virtual void scanGrids(MenuSystem& menu);// construct hierarchy of grids

virtual void initProj(); // setup proj
virtual void initMatrices(); // setup stiffness matrices on coarse grids
public:

MultiGridl Q;
“MultiGridi () {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu);

virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen

// DDSolverUDC

Spaceld getNoOfSpaces() const; // no_of_grids

BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,

Spaceld space, StartVectorMode start,

DDSolverMode mode=SUBSPACE) ;

// apply smoother

void residual (LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space);
BoolLean transfer (const LinEqVector& fv, Spaceld fi,

LinEqVector& tv, Spaceld ti,
BoolLean add_to_t= dpFALSE, DDTransferMode=TRANSFER); // apply proj

virtual int getWorkTransfer (Spaceld fi, Spaceld ti,
const PrecondWork Work_tp) const;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const;

virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp) const;
virtual real getStorageSolve (Spaceld space) const;
String comment ();

s

#endif

The simulator class MultiGridl is additionally derived from the multigrid inter-
face DDSolverUDC. The appropriate function for smoothers and transfer operators
have been overloaded. There is also some additional data like the number of grids
no_of _grids, parameters and a Handle for the actual multigrid method DDSolver.
Some data like Handle (GridFE) and Handle(DegFreeFE) has been turned into vec-
tors. We now have one GridFE and one DegFreeFE object per grid with indices from
1 to no_of_grids.

DirectSolver IterativeSolver
L [KrylovitSolver) [DDiter J

] [~ -
(o) - (on | [) o [oecer)

Figure 3: Linear solvers available as smoother

BasicltSolver

The transfer operators are build upon the class Proj. The smoothers are implemented
using parameters and a Handle for a LinEqSolver (see figure 3), a Handle for a
LinEqSystemStd and a parameter for Matrix (NUMT).

The functions overloading the DDSolverUDC interface look like this:

DDSolverUDC

Spaceld MultiGridl:: getNoOfSpaces() const
{ return no_of_grids; }

BooLean MultiGridi:: solveSubSystem (
LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorMode start, DDSolverMode m)

smooth_prm (space)->startmode = start;
system (space)->attach (x, b);
smooth (space)->solve (system (space) ());

return dpTRUE; // solution has changed

void MultiGridl:: residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space)
{
system (space)->attach (x, b);
system (space)->residual (r);

}

BooLean MultiGridi:: transfer (
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode)

{
if (fi == ti-1) // prolongation
proj (fi)->apply (fv, tv, NOT_TRANSPOSED, add_to_t);
else if (fi == ti+1) // restriction
proj (ti)->apply (fv, tv, TRANSPOSED, add_to_t);
else fatalerrorFP("MultiGridil:: transfer","from %d to %d4d", fi, ti);
return dpTRUE;
}

int MultiGridl:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const
{
if (fi == ti-1)
return proj (fi)->getWork();
if (fi == ti+1)
return proj (ti)->getWork();
return 0;

}

real MultiGridl:: getStorageTransfer (Spaceld fi, Spaceld ti) const
{
if (£fi == ti-1)
return proj (fi)->getStorage();
return 0;

}

int MultiGridl:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return smooth (space)->getWork(); }

real MultiGridl:: getStorageSolve (Spaceld space) const
{ return smooth(space)->getStorage(); }

String MultiGridi:: comment ()
{ return "MultiGridl multigrid test"; }

The function getNoOfSpaces (j) simply returns the (hopefully) initialized number
of grids variable.

The function solveSubSystem (smoother §) is based on the solve function of LinEqSolver.
The linear equation system is assumed to be initialized, the matrices have been as-
sembled and attached. The StartVectorMode is passed via the prm(LinEqSolver)

class.
The function residual (b—L;z) is based on the residual function of LinEqSystemStd.

The function transfer (R;_;, and R;;_1) uses the interpolation function Proj,
which has been initialized previously. We choose pure interpolation as prolongation
R;_; ; and the adjoint (TRANSPOSED) operation as restriction

Rjj—1=

* .
7—1.

3.1 Code

The code, including the initialization and the menu definitions, looks like this:?

MultiGrid1.C

#include <MultiGridi.h>

#include <PreproBox.h>

#include <ElmMatVec.h>

#include <FiniteElement.h>

#include <ErrorEstimator.h>

#include <Vec_real.h>

#include <DDIter.h>

#include <createElmDef.h> // for calling hierElmDef in MultiGridl::define
#include <createMatrix_real.h> // creating stiffness matrices
#include <createDDSolver.h> // creating multigrid object
#include <createlLinEqSolver.h> // creating smoothers

MultiGridl:: MultiGridi () {}

void MultiGridl:: adm (MenuSystem& menu) // administer the menu

{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu) ; // read menu answers into class variables and init
}

void MultiGridi:: define (MenuSystem& menu, int level)

{

// the domain is fixed: [0,1] nsd

menu.addItem (level, // menu level (level+l indicates a submenu)
"no of grid levels", // menu command/name
"level", // command line option: +level
"no of uniform refinements",
g, // default answer (2D problem)
"I1'); // valid answer: 1 integer

menu.addItem (level, // menu level (level+l indicates a submenu)
"no of space dimensions', // menu command/name
"nsd", // command line option: +nsd
m
", // default answer (2D problem)
"I1'); // valid answer: 1 integer

2you will find the code in MultiGrid1/MultiGrid1.C

menu.addItem (level, // menu level (level+l indicates a submenu)
"element type", // menu item command/name

"elm_tp", // command line option (+elm_tp here)
"classname in ElmDef hierarchy",
"E1lmB4n2D", // default answer

// valid answers are the classnames in the ElmDef hierarchy
// where all the elements in Diffpack are defined:
validationString(hierElmDef())); // list all the classnames

// submenus:

LinEgAdm:: defineStatic (menu, level+l);// linear system parameters
prm(DDSolver):: defineStatic (menu, level+1);// multigrid parameters

menu. setCommandPrefix ("smoother");

prm(LinEgSolver) : :defineStatic (menu, level+l);// smoother parameters

menu. unsetCommandPrefix ();

FEM: : defineStatic (menu, level+1);// numerical integration rule
Store4Plotting:: defineStatic (menu, level+1);// dumping of fields and curves

void MultiGridl:: scan (MenuSystem& menu)

{

// load answers from the menu:

no_of_grids = menu.get ("no of grid levels").getInt();
smooth.redim (no_of_grids);

system.redim (no_of_grids);

smooth_prm.redim (no_of_grids);

proj.redim (no_of_grids-1);

grid.redim (no_of_grids);

dof .redim (no_of_grids);

mat_prm.redim (no_of_grids-1);

scanGrids(menu); // scan and construct the hierarchy of grids

// allocate data structures in the class:

u.rebind (new FieldFE (grid(no_of_grids) (),"u")); // allocate, with field name "u"
error.rebind (new FieldFE (grid(mo_of_grids) (), "error"));
int 1i;

for (i=1; i<=no_of_grids; i++)
dof (i) .rebind (new DegFreeFE (grid(i)(), 1)); // 1 for 1 unknown per node

lineq.rebind (new LinEqiAdm()); // make linear system and solvers
lineq->scan (menu); // determine storage and solver type
linsol.redim (dof(no_of_grids)->getTotalNoDof()); // init length of lin.sys. solution
lineg->attach (linsol); // use linsol as sol.vec. in lineq

menu.setCommandPrefix("smoother");

for (i=1; i<=no_of_grids; i++) { // all grids read the same
smooth_prm(i).rebind(new prm(LinEqSolver));
smooth_prm(i)->scan (menu);
smooth(i) .rebind(createLinEqSolver (smooth_prm(i)()));
system(i) .rebind(new LinEqSystemStd (EXTERNAL_STORAGE));

}

menu.unsetCommandPrefix () ;

for (i=1; i<no_of_grids; i++)
proj(i) .rebind(new ProjInterpSparse());

ddsolver_prm.scan(menu) ;

ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver—->attachUserCode (*this) ;

10

for (i=1; i<no_of_grids; i++) { // read from LinEqAdm
mat_prm(i).rebind(new prm(Matrix (NUMT)));
mat_prm(i)->scan (menu);
mat_prm(i)->sparse_adrs.rebind (new SparseDS);
}
}

void MultiGridl:: scanGrids (MenuSystem& menu) // construct hierarchy of grids
{

String elm_tp = menu.get ("element type');

int nsd = menu.get ("no of space dimensions").getInt();

// ---- make grid using a box preprocessor and the menu information: ----
// construct the right syntax for the box preprocessor:
// d4=2 [0,1]1x[0,1]
// d=2 elm_tp=ElmB4n2D [2,2] [1,1]
// this must valid for any nsd so we must make some string manipulations:
String geometry = aform('d=%d ",nsd); // e.g. "d=2"
String grading = "["; // unit (hyper-) cube
int 1i;
for (1 = 1; 1 <= nsd; i++) {
if (i < nsd) {
geometry += "[0,1]x"; grading += "1,";
} else {
geometry += "[0,1]"; grading += "1";
}
}

grading += "]1";

int d = 1;
for (i=1; i<=no_of_grids; i++) {
d x= 2;
int j;
String part = "["; // make partition strings e.g.
for (j=1; j<=nsd; j++) { // [2,2]1, [4,4]1, [8,8], [16,16]
part += aform("%d4d",d);
if (j<nsd)
part += ",";
}
part += "]";
String partition = aform("d=}d elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part.chars(),
grading.chars());
PreproBox p;
p.geometryBox() .scan (geometry);
p-partitionBox () .scan (partition);
grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

FEM: :scan (menu); // load type and order of the numerical integration rule
Store4Plotting::scan (menu, grid(no_of_grids)->getNoSpaceDim());

s_0 << "\n #x*x Finite element grids: ****\n";
S_0 << " element type: " << elm_tp << "\n";
for (i=1; i<=no_of_grids; i++)
s_0 << "\n Grid " << i << ":\tNo of nodes: " << grid(i)->getNollodes()
<< ",\tno of elements: " << grid(i)->getNoElms();

11

s_o << "\n\n";

}
void MultiGridi:: £illEssBC (Spaceld space)
{
dof (space) ->initEssBC (); // init for assignment below
int nno = grid(space)->getNoNodes(); // no of nodes
for (int 1 = 1; i <= nno; i++)
if (grid(space)->BolNode (1)) // is node i subj. to any boundary indicator?
dof (space)->fillEssBC (i, 0.0); // u=0 at nodes on the boundary
//dof (space) ->printEssBC (s_o, 2); // for checking the essential boundary cond.
}

void MultiGridl:: integrands (ElmMatVec& elmat, FiniteElement& fe)
{

int i,j,q;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW(); // det J times numerical itg.-weight

const int nsd = fe.getNoSpaceDim();

// find the global coord. x of the current integration point:
Ptv(real) x (grid(1)->getNoSpaceDim());

fe.getGlobalEvalPt (x);

real f_value = f(x);

real k_value = k(x);

real nabla_prod;
for (1 = 1; 1 <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla_prod = 0;
for (q = 1; q <= nsd; q++)
nabla_prod += fe.dN(i,q) * fe.dN(j,q);

elmat.A(i,j) += k_value*nabla_prod*detJxW;
T
elmat.b(i) += fe.N(i)*f_valuexdetJxW;
T
T

real analyticalSolution (const Ptv(real)% x, real /*t*/)
{
const int nsd = x.size();
real p = 1;
for (int 1 = 1; i <= nsd; i++)
p *= x(i) * (x(i) - 1);
return p;

void MultiGridi:: initProj() // setup proj operators
{
for(int i=1; i<no_of_grids; i++) {
proj (i) ->rebindDOF(dof (i) (), dof(i+1)());
proj(i)->init);
}
}

void MultiGridl:: initMatrices() // setup stiffness matrices on coarse grids

{

12

for(int i=1; i<no_of_grids; i++) {
£i11EssBC (1); // set essential boundary conditions
Handle (Vec(NUMT)) u;
Handle(Vec(NUMT)) rhs;
u = new Vec(NUMT) (dof(i)->getTotallNoDof ());
rhs = new Vec(NUMT) (dof (i)->getTotallloEqs ());

mat_prm(i)->nrows = dof (i)->getTotallloEqs ();
mat_prm(i)->ncolumns = dof (i)->getTotalNoDof ();
mat_prm(i)->nsd = dof (i)->grid() .getNoSpaceDim() ;

if (mat_prm(i)->storage == "MatStructSparse')
makeSparsityPattern (mat_prm(i)->offset,
mat_prm(i)->ndiagonals, dof(i)());
else if (mat_prm(i)->storage.contains("Sparse"))
makeSparsityPattern (mat_prm(i)->sparse_adrs(), dof(i)());
else if (mat_prm(i)->storage == "MatBand")
mat_prm(i)->bandwidth = dof (i)->getHalfBandwidth();

Handle (Matrix(NUMT)) A;
A = createMatrix(NUMT) (mat_prm(i)());

dof (i) ->initAssemble() ;
makeSystem (dof(i) (), AQ), rhs());

system(i)->attach(A());
ddsolver->attachLinRhs (rhs(), i, dpTRUE);
ddsolver->attachLinSol(u(), i);

void MultiGridl:: solveProblem () // main routine of class MultiGridi
{

initProj();

initMatrices();

f£il1EssBC (no_of_grids); // set essential boundary conditions
makeSystem (dof (no_of_grids)(), lineq()); // calculate linear system

system(no_of_grids)->attach(lineq->A1 ());
ddsolver->attachLinRhs(lineq->bl (), no_of_grids, dpFALSE);
ddsolver->attachLinSol(lineq->x1 (), no_of_grids);

if (lineg->getSolver().description().contains ("Domain Decomposition")) {
BasicItSolver& sol = CAST_REF(lineq->getSolver(), BasicItSolver);
DDIter& ddsol CAST_REF(sol, DDIter);
ddsol.attach(*ddsolver);

}

linsol.fill (0.0); // set all entries to 0 in start vector

dof (no_of_grids)->fillEssBC (linsol); // insert boundary values in start vector
lineqg->solve(); // solve linear system

int niterations; BooLean c; // for iterative solver statistics
if (lineq->getStatistics(niterations,c)) // iterative solver?
s_o << oform("\n\n *** solverisconverged in %3d iterations ***\n\n",
c? " "™ : " not ",niterations);

// the solution is now in linsol, it must be copied to the u field:
dof (no_of_grids)->vec2field (linsol, u());

13

Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

ErrorEstimator::errorField (analyticalSolution, u(), DUMMY, error());
Store4Plotting: :dump (error());

ErrorEstimator::Lnorm (analyticalSolution, // supplied function (see above)

uQ), // numerical solution

DUMMY, // point of time

L1_error, L2_error, Linf_error, // error norms
GAUSS_POINTS) ; // point type for numerical integ.

void MultiGridi:: resultReport ()
{
s_o << oform("\nLl-error=%12.5e, L2-error=%12.5e, max-error=%12.5e\n\n",
L1_error, L2_error, Linf_error);
// in small problems (less than 100 nodes), print the nodal error
// values on the file "errors.dat"
if (grid(no_of_grids)->getNoNodes() < 300)
error->values() .print ("FILE=error.dat","Nodal values of the error field");

real MultiGridl:: £ (const Ptv(real)& x)
{
const int nsd = grid(1)->getlNoSpaceDim();
// could check nsd == x.size() for consistency
int i,j; real s,p;
s = 0;
for (1 = 1; 1 <= nsd; i++) {
p=1;
for (j = 1; j <= nsd; j++)
if (4 '= j)
p *= x(j) * (x(3) - 1);
s += 2%p;
}

return -s;

real MultiGridl:: k (const Ptv(real)& /#*x*/)
{ return 1; }

Spaceld MultiGridl:: getNoOfSpaces() const
{ return no_of_grids; }

BooLean MultiGridi:: solveSubSystem (
LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorMode start, DDSolverMode m)

{
smooth_prm (space)->startmode = start;
system (space)->attach (x, b);
smooth (space)->solve (system (space) ());

return dpTRUE; // solution has changed

void MultiGridl:: residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space)

{
system (space)->attach (x, b);

14

system (space)->residual (r);

}

BooLean MultiGridi:: transfer (
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode)

{
if (fi == ti-1) // prolongation
proj (fi)->apply (fv, tv, NOT_TRANSPOSED, add_to_t);
else if (fi == ti+1) // restriction
proj (ti)->apply (fv, tv, TRANSPOSED, add_to_t);
else fatalerrorFP("MultiGridil:: transfer","from %d to %d4d", fi, ti);
return dpTRUE;
T

int MultiGridl:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const
{
if (fi == ti-1)
return proj (fi)->getWork();
if (fi == ti+1)
return proj (ti)->getWork();
return 0;

}

real MultiGridl:: getStorageTransfer (Spaceld fi, Spaceld ti) const
{
if (£fi == ti-1)
return proj (fi)->getStorage();
return 0;

}

int MultiGridl:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return smooth (space)->getWork(); }

real MultiGridl:: getStorageSolve (Spaceld space) const
{ return smooth(space)->getStorage(); }

String MultiGridi:: comment ()
{ return "MultiGridl multigrid test"; }

Figure 4: Initializing the multigrid components

The interesting part here is the initialization of the different components. The
GridFEs are constructed in scanGrids passing different strings to PreproBox. There

15

are more advanced ways of constructing the family of grids, which will be covered
elsewhere [Zum96b].

The projection operators are initialized in initProj using rebindDOF. This is a
general purpose interpolation procedure. The order of the arguments is essential
here. We evaluate the coarse grid functions on a finer grid, not reverse. We will see
more efficient and more specialized versions of projection operators [Zum96b]. There
are also applications, where the projection operators depend on the stiffness matrices
on the grids or coarse grid matrices depend on the projection operators.

The operators on the coarser grids are initialized in initMatrices(). The fine grid
matrix is assembled the standard way in solveProblem supported by LinEqAdm. The
matrix is reused for the smoother on the finest grid.

system(no_of _grids)->attach(lineq->A1 ());

Unfortunately it is not that easy to use the LinEqAdm functionality for the coarser
grids, so we have to construct the matrices on our own. The makeSystem call actually
assembles the matrices and the right hand sides. The right hand sides are only useful
for the nested iteration multigrid, which we will use in some of the tests. Otherwise
one can skip the assembly of rhs. There are also cases where we use the projection
operators and the fine grid matrix instead of assembling matrices on the coarser
levels, which will be covered elsewhere [Zum96b].

For a matter of completeness, we also provide an input file (table 1) and the main
program:

Figure 5: Main application menu

8complete input files are in MultiGridl/ Verify/*.i

16

menu item answer
no of grid levels 4
no of space dimensions 2
basic method DDlter
no of additional convergence monitors 1
preconditioning type PrecNone
#1: convergence monitor name CMADbsTrueResidual
#1: residual type ORIGINAL_RES
element type ElmB4n2D
domain decomposition method Multigrid
cycle type gamma 1
smoother basic method SOR
smoother max iterations 1

Table 1: Input file

MultiGrid1/
main

#include <MultiGridi.h>

int main (int nargs, const char** args)

{
initDIFFPACK (nargs, args);
global_menu.init ("Flexible Poisson equation simulator","MultiGridi');
MultiGridl problem; // make a simulator object, called problem
global_menu.multipleLoop (problem);// solve one or several problems
DBP ("leaving main') ;
return 0;

3.2 Number of grids and iterations

Even with this simple simulator we can do several experiments with multigrid. Just
to get some feeling for different components of the algorithm, we encourage you to
do some tests on your own. Playing around with parameters will be useful, if you
want to apply this techniques to more advanced problems. The following exercises
may be some guideline for your experiments?.

Exercise 1 The number of iterations.

(table 2, test1.1)

Take a multigrid V-cycle with an exact coarse grid solver, one pre- and one post-
smoothing step. Use an absolute residual termination criterion for some arbitrarily
small tolerance. The coarse grid may consist of 2 X 2 elements. Now the question:
What is the dependence of the number of iterations on the number of grids or the

*files are in MultiGrid1/Verify/

17

menu item answer

no of grid levels | {2 & 3 & 4}

Table 2: The number of iterations, testl.1i

number of unknowns? Do tests for a 4 x 4 grid (two grids), a 8 X 8 grid (three grids)
and increase the number of unknowns further. Is the number of iterations (really)
bounded? The number of iteration is displayed by the convergence monitor. What
do you observe?

A remark on this exercise: A bounded number of iterations (for a fixed tolerance)
means a bounded number of operations per unknown: The operations per iteration
sum up to some constant times the number of unknowns. This means that we are
solving the equation system for n unknowns in O(n) operations, which is optimal.
Hence it is the ultimate goal to construct a multigrid algorithm which only needs
a bounded number of iterations. For many applications it can be proven that such
algorithms exist. However there are applications where an optimal algorithm is not
known.

Exercise 2 The unit cube.

(table 3, test2.1)

menu item answer
no of grid levels {2 &3 &4}
no of space dimensions 3
element type ElmB8n3D

Table 3: The unit cube, test2.1

Redo the computations in three dimensions. Compare the number of iterations to
the two dimensional case. Are the number of iterations still bounded? Also have a
look at the total execution time and the the number of unknowns. The execution
times for long runs are available in file SIMULATION. dp. Is there a qualitative different
behavior in three dimensions or do only the constants differ?

The multigrid method in general is an O(n) operation algorithm independent of
the dimensions. However, the performance of some variants like hierarchical basis
methods, deteriorate at least logarithmically in the number of unknowns n (linear in
the number of multigrid levels j). The three dimensional case usually is a harder test
case than the two dimensional one.

3.3 Smoother

Exercise 3 Different smoothers.
(table 4, test3.1)

18

menu item answer

smoother basic method | {SOR & SSOR & Jacobi & ConjGrad}

Table 4: Different smoothers test3.1

Use different iterative solvers as smoothers. Try the classic methods like Gauss-
Seidel (SOR) and symmetric Gauss-Seidel (SSOR) iteration, Jacobi iteration and
conjugated gradients (without preconditioning). Compare the number of iterations.
How does the comparison look like, if you compare execution time or number of
multigrid iterations instead?

menu item answer
(S)SOR relaxation parameter 1.0

Table 5: Relaxation parameter, test3.1

Caveat: The over-relaxation parameter for SOR and SSOR is set to one (table 5).
The optimal parameter differs from the optimal parameter as stand-alone iterative
solvers. Rather under- than over-relaxation is appropriate. You may also perform
some tests on this parameter.

The performance of these iterative solvers deteriorates with increasing grid size used
as stand-alone solvers. In connection with multigrid, this is not longer true. But
there are of course significant differences between the smoothing procedures. We will
cover this subject elsewhere [Zum96b].

In the context of preconditioning we will see that symmetric smoothers can be nec-
essary.

Exercise 4 The number of smoothing sweeps.

(table 6, test4.1)

menu item answer
smoother max iterations | {1 & 2 & 3 & 4}

Table 6: The number of smoothing sweeps, test4.1

Use a direct solver for the coarse grid, a multigrid V-cycle, SOR or Jacobi smoother,
symmetric pre- and post-smoothing. Now the question: How many smoothing steps
are optimal? Compare the total number of operations for the solution for different
numbers of smoothing steps. Start with a Vj;, V52 and increase the number. The
number of multigrid iterations will drop, but the work per iteration increases. You
will soon find an optimal value. What is it?

19

Figure 7: DDSolver parameter menu

3.4 W-cycle and nested iteration

We define the multigrid W-cycle and other cycles introducing a cycle parameter.
Instead of defining multigrid &, on level j by a single recursion (V-cycle) using ®;_4
once, we use a multiple recursion. We apply the multigrid ®;_; on grid j — 1 cycle-
times. The coarser grids are visited more often. The W-cycle is cycle equals two. If
you want to know why it is called “W” just take a look at figure 6.

et = Sl(z,b)
2?2 = a4 pé;zclle(o, r(b— Ljz'))
$i(z,b) = S%(a2,b)

Exercise 5 Different multigrid cycles.

(table 7, test5.1)

menu item answer
cycle type gamma | {1 & 2 & 3 & 4}

Table 7: Different multigrid cycles, test5.1

20

Vary the cycle parameter. This means multiple recursive call of the multigrid code
at each level. This number increases the complexity of the algorithm. It is usually
used for more complicated grids or equations. If you really encounter convergence
problems, you can try a W-cycle multigrid or parameters gamma even higher. Look
at the performance in our case. How does the number of iterations behave? Compare
this to the total execution time.

nested iteration

multigrid

smoother

Figure 8: Nested iteration, multigrid V-cycle

Nested iteration, or full multigrid or cascadic iteration like it is called sometimes, is
based on the idea that a coarse grid solution may serve as a good start guess for a
fine grid iteration. The solver on the fine grid is a multigrid cycle. The coarse grid
solution has been itself obtained by a multigrid iteration. This solution does not
have to be that accurate. Discretization error is enough. It is also not obvious that
the transport of the start solution is the same as a multigrid prolongation between
the grids. In fact the procedures can differ, what we will use elsewhere (higher order
interpolation) [Zum96b].

Exercise 6 Nested iteration.

(table 8, test6.1)

menu item answer

domain decomposition method | NestedMultigrid
nested cycles {1&2& 3 &4}

Table 8: Nested iteration, test6.1

Our first test of the nested iteration is just calling it. There is a parameter responsible
for the coarse grid solution. nested cycles controls the number of multigrid cycles
before the solution is passed to the next finer grid as a start solution. Observe the
number of total iterations and the computing times. Compare these numbers to the
ordinary multigrid starting with a zero vector. Can you explain why the first iteration
in the convergence plot is so much better than the later ones?

Further experiments: How does the convergence plot look for one nested cycle and
different numbers of levels? How is this related to the discretization error on each
level? This resembles in the question about a suitable termination criterion of the
inner loop. How could such a criterion look like and be implemented?

21

4 Increasing the flexibility

We want to extend the flexibility of the MultiGridl example simulator. We will
include options for using multigrid as a preconditioner for a Krylov iteration instead
of an iterative solver, including different pre- and post-smoothing and coarse-grid
operators and generating differently refined grid hierarchies.

The header declaration is extended by a few lines®:

MultiGrid?2

int preSmooth; // no of iterations
int postSmooth; // no of iterations
prun(Precond) precondPrm; // prm for DD preconditioner

This are parameters for constructing a preconditioner and controlling pre- and post-
smoothing.

The pre- and post-smoothing control is implemented like this:

Figure 9: Main application menu

in function MultiGrid2:: define (MenuSystem& menu, int level)

//define_sweeps

menu.addItem (level,
"sweeps", // menu command/name
"'sweeps", // command line options: +sweeps
"string like [2,2] = pre & post smoothing sweeps",

Syou will find the complete code in MultiGrid2/MultiGrid2.h and the new input files in
MultiGrid2/ Verify /* .

22

"[1,17", // default answer: V1,1 cycle
"s"); // valid answer: string

23

in function MultiGrid2:: scan (MenuSystem& menu)

// read_sweeps

Is is(menu.get ("sweeps'));
is->ignore (’[’);

is->get (preSmooth);
is->ignore (’,’);

is->get (postSmooth);

function MultiGrid2:: solveSubSystem

BooLean MultiGrid2:: solveSubSystem (
LinEqVector& b, LinEqVector& x,
Spaceld space, StartVectorlMode start, DDSolverlode mode)

if (space>1) {
if ((mode==SUBSPACE_FWD) | | (mode==SUBSPACE))
smooth_prm (space)->max_iterations = preSmooth;
else if (mode==SUBSPACE_BACK)
smooth_prm (space)->max_iterations = postSmooth;
else fatalerrorFP("MultiGrid2:: solveSubSysten",'"mode ", mode);
if (smooth_prm (space)->max_iterations == 0)
return dpFALSE; // solution has not changed
}
smooth_prm (space)->startmode = start;
system (space)->attach (x, b);
smooth (space)->solve (system (space)());
return dpTRUE; // solution has changed

}
//smoother

The number of iterations is read from the menu. It is passed to the smoother
via the parameter max_iterations of prm(LinEqSolver). The DDSolverMode is
used to determine whether the pre-smoother SUBSPACE_FWD or the post-smoother
SUBSPACE BACK is required. On the coarsest grid and in the case of an additive multi-
grid (see section 4.5)there is only one smoother. The value SUBSPACE indicates this.
We treat it in our implementation as a pre-smoother. In the case we do not per-
form pre-smoothing or post-smoothing (we have to do at least one on each level),
which means zero iterations, we return dpFALSE to indicate that the solution has
not changed. For reasons of efficiency we do not set the solution to zero, even if
StartVectorMode indicates this, as long as we flag the result vector as untouched
returning dpFALSE.

We also want to treat the coarsest grid solver different than the other grid solvers,
using a special parameter block for prm(LinEqSolver). In addition we introduce
node renumbering. This is used to optimize the direct solver performance on the
coarsest grid and the smoother performance:

#include <createRenumUnknowns.h> // renumbering grids

#include <RenumUnknowns.h> // renumbering grids

in function MultiGrid2:: define (MenuSystem& menu, int level)

24

//define_renumber
menu.setCommandPrefix("smoother");
prm(LinEgSolver) : :defineStatic (menu, level+l);// smoother parameters
menu.addItem (level,
"renumber unknowns', // menu item command/name
n
"select a renumbering algorithm",
hierRenumUnknowns () [0], // default answer
validationString(hierRenumUnknowns())); // list all classnames
menu.unsetCommandPrefix();

menu.setCommandPrefix("coarse grid");
prm(LinEqgSolver) : :defineStatic (menu, level+1);// coarse grid solver
menu.addItem (level,
"renumber unknowns', // menu item command/name
m
"select a renumbering algorithm",
*hierRenumUnknowns (), // default answer
validationString(hierRenumUnknowns())); // list all classnames

menu.unsetCommandPrefix();
//end_define_renumber

in function MultiGrid2:: scanGrids (MenuSystem& menu)

//generate grids

PreproBox p;

p.geometryBox() .scan (geometry);
p-partitionBox () .scan (partition);

grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

if (i==1)
menu.setCommandPrefix('coarse grid");
else

menu.setCommandPrefix("smoother");
String reduce = menu.get ("renumber unknowns');
RenumUnknowns* r = createRenumUnknowns (reduce);
r->renumberlodes (grid(i) ());
delete r;
menu.unsetCommandPrefix();

The code using multigrid as a preconditioner is short:

#include <PrecDD.h>

in function MultiGrid2:: scan (MenuSystem& menu)

precondPrm.scan(menu) ;
lineq->attach (precondPrm);

Precond &prec =lineq->getPrec();

25

if (prec.description().contains("Domain Decomposition)) {
PrecDD& sol = CAST_REF(prec, PrecDD);
sol.init (*ddsolver);

}

[simulator]_[Krylovsolver]—[multigrid prec.]
I I . | |
[A—]—[sub—domaln solver] [transfer]_[Rn,n—l]

[An—l sub—domain solver]
[An—z sub-domain solver] [transfer]_[Rn_l'“'z]

[Al }—[sub—d(;r;wain solver] [transfer]_[Rz'l]

Figure 10: Components of multigrid as a preconditioner

We pass the DDSolver object to the PrecDD preconditioner. The parameters are used
to have access to the preconditioner. Otherwise it would be initialized by LinEqAdm
inside solve, which is too late for our purpose. The decision, whether to use a
multigrid solver or a preconditioner is made via the menu, choosing DDIter and
PrecNone or ConjGrad and PrecDD (see table 9).

menu item iterative solver | preconditioner
basic method DDIter ConjGrad
preconditioning type PrecNone PrecDD

Table 9: Solver and preconditioner

Finally we want to increase flexibility in the generation of the grids. The coarse grid
partition can be specified. We can have finer coarse grids than the previous [2 X 2]
grid. We also allow specification of the refinement, which was just bisection along each
coordinate axis, division by a factor two. We allow different factors now. Additionally
a grid can be refined along one axis differently than in along another axis. The
parameters are choosen like [2, 3, 4] analog to the Compare the refineIfBox(const
Ptv(int)&) function of GridFE.

in function MultiGrid2:: define (MenuSystem& menu, int level)

//define_partition

menu.addItem (level,
"coarse partition", // menu command/name
"partition", // command line options: +partition
"string like 2,4,2",
v[2,21", // default answer: 2x2 division (3x3 nodes)
"S'); // valid answer: string

menu.addItem (level,

"refinement", // menu command/name
"refinement", // command line options: +refinement

26

"string like [2,2,2] = bisect",

"[2,2]", // default answer: isotropic bisection 2x2

"s"y; // valid answer: string
//end_define_partition

in function MultiGrid2:: scanGrids (MenuSystem& menu)

//scan_partition
Ptv(int) d(nsd);
Is dIs(menu.get (‘coarse partition'));
dIs->ignore (’[’);
for (1 = 1; 1 <= nsd; i++) {

dIs->get (d(i));

if (i < nsd)

dIs->ignore (’,’);

Ptv(int) ref(nsd);
Is rIs(menu.get ("refinement'));
rIs->ignore (°[?);
for (1 = 1; 1 <= nsd; i++) {
ris->get (ref(i));
if (i < nsd)
rIs->ignore (’,?);

}
for (i=1; i<=no_of_grids; i++) {
int j;
String part = "["; // partition string e.g. [2,2]

for (j=1; j<=nsd; j++) {
part += aform("%d",d(j));
d(j) *= ref(j);

if (j<nsd)
part += "o
}
part += u]u;

String partition = aform("d=}d elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part.chars(),
grading.chars());
//generate grids
PreproBox p;
p.geometryBox() .scan (geometry);
p-partitionBox () .scan (partition);
grid(i) .rebind (new GridFE()); // make an empty grid
p.generateMesh (grid(i)());

4.1 Pre- and post-smoother
Exercise 7 Pre- and Postsmoothing.

(table 10, testl.i, testib.sh in MultiGrid2/Verify/)

Use a direct solver for the coarse grid and a sufficiently large number of levels. Keep
the sum of pre- and post-smoothing steps fixed on each level. For the Laplace op-
erator on the unit square with structured grids take a small number of smoothing

27

menu item answer

no of space dimensions 2
coarse partition [2,2]
refinement [2,2]
sweeps {[4,0] & [3,1] & [2,2] & [1,3] & [0,4]}

Table 10: Pre- and Postsmoothing, testl.i, testib.sh

steps v with SOR iteration (relaxation factor 1) or Jacobi iteration. Use a multigrid
V-cycle. What are the differences between different distribution of pre- and post-
smoothing steps? The symbol V; ; denotes a V-cycle, the first number is the number
of pre-smoothings and the second denotes the number of post-smoothings. Compare
the number of iterations needed for a pure pre-smoothing Vo cycle, a symmetric
smoothing V, /3,2 cycle, a pure post-smoothing ...Vp, cycle and some cycles in
between.

Another question is about the influence of pre- and post-smoothing on the termination
criterion. Is there a difference if you take a termination criterion that compares the
solution instead of the residual?

Also have a look at the iteration error (after one iteration, see testib.sh). Is there
a qualitative difference of the solutions? What kind of differences do you observe?

There is another reason to choose a specific number of pre- and post-smoothings. If
you have a self-adjoint operator and want to construct a symmetric preconditioner
(for a conjugated gradient solver), you will have to use a V,,,, cycle because of its
symmetry. We will cover this topic later.

1—2 -3 45 1—14-2-15-3
e 7 8 9 10 o4 73 s
W deds e o7 08
1‘6—1‘7—1‘8—1‘9—2‘0 2‘1—9‘72‘2—]‘0—2‘3
2‘1—2‘2—2‘3—2‘4—2‘5 1‘1—2‘4—1‘2—2‘5—1‘3

Figure 11: Lexicographic and red-black node ordering

Exercise 8 Red-black vs. lexicographic Gauss-Seidel

(table 11, test5.1)

We now want to continue our study of smoothing operators. We choose the SOR
method, a standard multigrid V-cycle and want to look at the node ordering in
conjunction with smoothers. Some smoothers like Jacobi or ConjGrad are indepen-
dent of the node ordering. The performance of other smoothers like SOR and SSOR
depends on the node ordering. During one SOR iteration one update of a variable
depends on all previously updated variables. Reordering nodes changes these depen-
dencies. Compare the number of iterations for the different node numberings. How
large is the difference between them?

28

menu item answer
element type ElmT3n2D
smoother basic method SOR
smoother renumber unknowns | {RenumNoUnknowns &

RedBlack}

Table 11: Red-black vs. lexicographic Gauss-Seidel, test5.1

For structured grids and isotropic operators discretized by a 5-point stencil (= el-
ement type E1ImT3n2D) the red-black ordering (see figure 11) is known to optimal
for (S)SOR iterations. You can think of two virtually independent grids. First one
iterates on the red sub-grid and afterwards on the black sub-grid. This means nearly
two times the performance than a single iteration on one grid (half the number of
iterations). The trick now is, that one can think of extending the red and the black
grid to the global grid (= the same reduction rate), but computing only the values
needed in the next step (= half the number of operations).

Caveat: The term red-black is only useful for structured grids. In the case of a 9-
point stencil (= element type E1mB4n2D) one can use a 4-coloring of the grid instead.
Nodes on unstructured grids can also be colored in a more expensive (and heuristic)
approach using slightly more colors.

Exercise 9 Red-black and prolongation.

One can optimize the multigrid method further in the case of red-black SOR smooth-
ing. Look at the prolongation and restriction operators. Usually they operate on all
nodes of a grid. We already saw that now there is a difference between red and black
nodes. They are updated at different times. How does this affect prolongation? Can
you skip one half of the operations there? Which color?

4.2 Coarse grid solver

Exercise 10 Coarse grid solution.

(table 12, test2.1)

menu item answer
coarse partition [8,8]
sweeps [1,1]
coarse grid basic method | {SOR & ConjGrad & GaussElim}
coarse grid max iterations {1& 10}

Table 12: Coarse grid solution, test2.1

Take a coarse grid with several unknowns. Fix some V-cycle multigrid algorithm.
Now use an iterative coarse grid solver. How many iterations are optimal for the

29

coarse grid solution? Increasing the number of iterations will improve global conver-
gence and reduces the number of global iterations, while the cost per iteration also
increases. There will be some optimal value. Do experiments with a relative and
an absolute termination criterion for the coarse grid iteration. Compare the total
number of iterations. What is your conclusion?

Exercise 11 Direct coarse grid solution.

(table 13, test3.1)

menu item answer
matrix type MatSparse
coarse partition [16,16]
coarse grid basic method GaussElim
coarse grid renumber unknowns | {RenumNoUnknowns &
AMDhat &

AMDbar}

Table 13: Direct coarse grid solution, test3.1

Take a coarse grid with several unknowns and use a direct Gaussian elimination solver
for sparse matrices. The performance of the solver depends on the order of the nodes
on the coarse grid. The total multigrid performance should not be affected except for
the total execution time. Compare the number of operations for the different node
orderings and compare the total execution time. How do the node orderings affect
the execution time? Do they pay off?

The reordering of the nodes on the coarse grid itself can be a time consuming task.
However the coarse grid is visited often, so even a more expensive reordering method
may be used here. The question is of course of major importance for large coarse
grids, which may be needed due to the geometry of the domain or the structure of
the coeflicients. In the unit square case the coarse grid is usually not that important,
as one can choose very coarse grids and the optimal node ordering is known a priori
(some nested dissection ordering scheme).

Exercise 12 The number of levels.

(table 14, test4.1)

menu item answer
no of grid levels {2& 3 &4 &5}
coarse partition | {[2,2] & [4,4] & [8,8] & [16,16]}

Table 14: Direct coarse grid solution, test4.1

We now look at a Vj; multigrid cycle with a direct coarse grid solver. Take some
band matrix or sparse matrix data structure and apply a direct solver. Take care

30

about a good node ordering suited for your direct solver. Fix the number of unknowns
on the finest grid. The question is, what is the optimal size of the coarse grid? A
large coarse grid improves convergence and reduces the number of iteration, but is
expensive to solve. Compare the total number of operations to solve the system up
to an arbitrary small precision. How large is optimal coarse grid? Can you guess a
simple formula for its size?

This formula depends on the performance of the coarse grid solver and therefore will
be different for three dimensional problems.

4.3 Semi-coarsening and non-standard refinement
Exercise 13 Semi-coarsening

(table 15, test6.1)

menu item answer
coarse partition | {[16,2] & [2,16]}
refinement {[1,2] & [2,1]}

Table 15: Semi-coarsening, test6.1

Figure 12: Anisotropic grid, derived by semi-coarsening

We now have a look at different ways of grid refining. One way is anisotropic refine-
ment. This means refinement along different directions may differ. In two dimensions
this can be bisection along the x-axis and no refinement along the y-axis or vice versa.
We use a standard multigrid V; ; cycle and a coarse grid solver. We fix the finest
grid which is an isotropic grid (just standard). This means that the coarser grids
become anisotropic (figure 12). Compare the performance (the number of iterations)
for different anisotropic refinements. Is there a difference to standard isotropic [2, 2]
refinement?

The direct coarse grid solver is essential. What happens if the coarse grid solution is
just one SOR-cycle? How do the iterates deterioate?

Anisotropic refinement is not necessary in this example, but it may be useful for
advection-diffusion problems. The advection term dominates on the coarse grids, so
anisotropic coarse grids stretched along the direction of advection stabilize (improve)
discretization. Sometimes there are also constraints by geometry or coefficients, where
anisotropic grids are the only way to geometrically construct coarse grids. Think e.g.
of the flow in a long channel. This will be covered elsewhere [Zum96b].

31

Exercise 14 Non-bisecting refinement

(table 16, test7.1)

menu item answer
no of grid levels {2 & 3}
coarse grid basic method GaussElim
refinement {12,2] & [4,4]}

Table 16: Non-bisecting refinement, test7.1

Up to now we only have considered refinement via bisection which means a factor of
two. The grids and spaces were nested, the coarser space a subset of the finer space.
This means an integer refinement factor. Using a factor greater than 2 decreases
the number of intermediate levels. We choose a standard V;j; multigrid cycle and
fix the coarsest and the finest grid. We vary the refinement factor and the number
of intermediate levels. Observe the convergence rates and the number of multigrid
iterations. What is the effect of higher refinement factors?

If the multigrid performance degrades too much, we loose the optimal complexity of
the multigrid algorithm. Hence improvement of the smoother (increasing the number
of iterations) may be appropriate. Try a larger number of SOR smoothing steps.

Figure 13: rotated grids with /2 progression

Usually higher refinement factors are not used although some two-level domain de-
composition methods can be interpreted as such. There are also some lower re-
finement factors like /2 via rotated grids (figure 13). We will cover non-nesting
refinement elsewhere [Zum96b], where the refinement factors can be arbitrary.

4.4 Multigrid as a preconditioner

We now want to use multigrid as a preconditioner instead of a stand-alone iterative
solver. We choose the conjugated gradient algorithm to solve the Laplace equation.
The number of iterations needed depends on the condition number of the precondi-
tioned operator.

_ Amax(B L)
"~ Amin(B L)

with eigenvalues A, stiffness matrix £ and a preconditioner B. The convergence rate

is bounded by
CVE—=1
N

32

The condition number for a second order problem grows with O(h~2) with a charac-
teristic element size (mesh size) h. This means that the number of iterations grows
with a decrease of h and an increase of the number of unknowns. We already saw
that a multigrid iteration can reach optimal complexity i.e. there is an upper limit for
the number of iterations. The convergence rate of a single multigrid cycle is bounded
below 1. In the case of preconditioning this means that x < ¢ is limited independent
of the mesh size h.

The conjugated gradient algorithm requires a L-symmetric preconditioner. This
means

L-B=DB-L

For a multigrid cycle this is equivalent to: The pre- (S!) and the post-smoothing
(8%) is adjoint

St=8"
and the restriction and prolongation are also adjoint R; ;1 = Rj_; ;. The number of
pre- and post-smoothing has to equal. For example take a V;; cycle or a V5 5 cycle.

e One way to match the condition is to take a self-adjoint smoother: § = & like
Jacobi iteration or symmetric Gauss-Seidel iteration (SSOR).

e Another way to do it, is to use an unsymmetric smoother as a pre-smoother
and its adjoint as a post-smoother: Take a Gauss-Seidel iteration (SOR) or a
(R)ILU iteration with a node ordering 1,2, ..., n as pre-smoother and the same
method with a node ordering n,n — 1,...,1 as post-smoother.

e Omne alternative is also to use an additive multigrid (see section 4.5) with a
self-adjoint smoother: § = & like Jacobi iteration or symmetric Gauss-Seidel

iteration (SSOR).
Exercise 15 The smoother.

(table 17, preci.i)

menu item answer
basic method ConjGrad
preconditioning type PrecDD
smoother basic method | {SOR & SSOR & Jacobi & ConjGrad}

Table 17: The smoother, precl.i

We now compare the performance of different smoothers. We use a standard V;
multigrid cycle as a preconditioner for a conjugated gradient solver. We apply Gauss-
Seidel (S)SOR with over-relaxation parameter one and Jacobi smoothers. We also ap-
ply a conjugated gradient method without further precondition as a smoother. Com-
pare the number of multigrid iterations/ reduction rates and the computing times.
Especially compare the symmetric ones with the non-symmetric SOR smoother. How
does the non-symmetry influence the global convergence? How does the (outer) con-
jugate gradient algorithm improve the multigrid convergence?

33

Exercise 16 Iterative solver vs. preconditioner.

Using the same data we are now also able to compare the performance of multigrid
as a preconditioner (exercise 15) and multigrid as an iterative solver (exercise 3).
Compare the number of iterations and the global computing time. How does the
number of iterations change? Is the influence of the additional vector operations of
the conjugated gradients algorithm visible in the computing time? Do you know how
much memory the conjugated gradients algorithm additionally needs? Compare this
to the global amount of memory used.

The findings of this exercise are problem specific. Krylov methods like conjugated
gradients are specifically well suited for problems having only few eigenvalues which
can be eliminated in a few iterations in addition to the standard (narrow) spectrum
of eigenvalues. This may be the case for some jumping coefficient problems or specific
geometries. Often this is related to the issue of multiple eigenvalues. The conjugated
gradient method eliminates extreme eigenvalues independent of their multiplicity.
Hence problems with identical extreme eigenvalues can be solved quickly. However
in the case the eigenvalues do not coincide (numerically) but differ slightly, conjugate
gradients will need several iterations more and slow down.

Exercise 17 Non-symmetric preconditioner.

(table 18, prec2.1i)

menu item answer
sweeps [2,0]
smoother basic method SOR
basic method {BiCGStab & ConjGrad & CGS}
preconditioning type PrecDD

Table 18: Non-symmetric preconditioner, prec2.1

We now turn to non-symmetric Krylov methods. Solvers like BiCGStab, CGS or
GMRes are designed for the solution of non-symmetric problems. A preconditioner is
usually not symmetric and does not have to be in this context. Although we only
have a symmetric problem at hand, we will compare solvers with a non-symmetric
preconditioner. We choose a non-symmetric V5 g multigrid preconditioner and run
the different solvers.

Observe the divergence of the conjugated gradient method. This is rather a negative
example. Look at the convergence plot. Whenever you see such a pattern remember
to be careful about such issues like symmetry.

Compare the number of iterations and the computing time needed by the other
solvers. Try to find out how many matrix multiplications and calls of the precon-
ditioner are performed each iterations. Compare the methods based on some rough
work estimates.

When we will turn to advection-diffusion problems we will have to discuss this issue
again. We will cover this elsewhere [Zum96b].

34

4.5 Additive Preconditioner

We will now have a short look at a variant of the multigrid V cycle preconditioner.
Some additive versions with Jacobi smoothers originally proposed by [BPX90] called
BPX or “multilevel diagonal scaling” (MDS). It played an important role for the
proof of optimal complexity of multigrid. The interpretation as additive multigrid
was found later.

We start with an initial guess @ = 0. Hence the residual b — L2 equals b. _

®;(0) = SO)+ Rj_1,;®,-1(R;;-1b)

e
On level 1 we use a direct coarse grid solver

By (b) = LD

The idea is to run the corrections on the different grid levels independently. The
corrections on each level are independent for each unknown using a Jacobi smoother
S. The independence of lots of operations may serve as a source of parallelism
although the grid transfer operations, the restrictions and prolongations still are
serial operations. They can be broken up into independent operations splitting the
computational domain. The additive method usually will converge slower as the
multiplicative method but each step is better suited for parallel compution.

Exercise 18 Additive vs. multiplicative preconditioner.

(table 19, prec3.1i)

menu item answer
sweeps [1,1]
basic method ConjGrad
preconditioning type PrecDD
domain decomposition method {Multigrid &
AddMultigrid &

NestedMultigrid }

Table 19: Additive vs. multiplicative preconditioner, prec3.i

We now want to compare additive and multiplicative multigrid. We do not consider
the parallel aspects of both algorithms so the result does not take into account the
independence of some operations. We choose a conjugated gradient outer iteration
and precondition by a multigrid V; ; respectively a Vj cycle. We use standard multi-
plicative multigrid, additive multigrid and nested iteration multiplicative multigrid.
Compare the number of operations and the computing time needed.

Compare an additive V3 cycle instead using the same number of smoothing steps on
each level as the multiplicative version. How do the convergence rates/ number of
iterations now compare?

35

Comparing the nested iteration for multiplicative multigrid, we have to mention that
there is also a nested iteration for the conjugated gradient method. The concept of
nested iteration is in fact not tied to any specific iterative solver at all. We will treat
this elsewhere [Zum96b]. This nested iteration can utilize any kind of preconditioner
like additive or multiplicative multigrid, but it needs more administration in the outer
loop and some extensions of the code. We also refer to section 5.2.

5 Nonlinear problems

We first recall the usage of nonlinear solvers in Diffpack. DBased on the class
NonLinEqSolver there are several algorithms available, such as successive substi-
tution (or Picard iteration), Newton’s method (or Newton-Raphson) iteration and
nonlinear conjugated gradients.

5.1 Diffpack nonlinear interface

The problem is, that the user interface of the nonlinear methods is different than
the linear solvers. In the linear case we used the LinEqAdm class to manage nearly
all memory allocation and initialization tasks. In the nonlinear case we have to keep
track of the data ourselves. This is due to the fact that we have to update the stiffness
matrix or the right hand side frequently, data shared between application code and
nonlinear solver. We also have to provide a linear equation solver ourselves. This is
accomplished filling in a NonLinEqSolverUDC interface. Since this is only documented
for time dependent problems up to now (chapter 5 in [Lan94]), we include here the
code for the stationary case. We will use it as a starting point for the development

of nonlinear multigrid.®
NIElliptic

#ifndef N1Elliptic_h_IS_INCLUDED
#tdefine N1Elliptic_h_IS_INCLUDED

t#tinclude <FEM.h> // FEM algorithms, FieldFE, GridFE etc
#include <DegFreeFE.h> // mapping: nodal values -> linear system vec
#include <LinEgAdm.h> // linear systems, storage and solution

#include <NonLinEqSolverUDC.h> // user’s class interface to nonlinear solvers
#include <NonLinEqSolver_prm.h> // parameters for nonlinear solvers
#include <NonLinEqSolver.h> // interface to nonlinear solvers
#include <Store4Plotting.h>
class N1Elliptic : public FEM, public NonLinEqSolverUDC,
public MenuUDC, public Store4Plotting

{

protected:
// general data:
Handle (GridFE) grid; // finite element grid
Handle (DegFreeFE) dof; // mapping: nodal values <-> linear system unknowns
Handle (FieldFE) u; // finite element field, the primary unknown
Vec(real) nonlin_solution; // nonlinear solution

you will find the complete code in N1E1liptic/

36

Vec(real) linear_solution; // solution of linear subsystem
prun(NonLinEqgSolver) nlsolver_prm; // parameters for solver
Handle(NonLinEqSolver) nlsolver; // nonlinear solver

Handle (LinEgAdm) lineq; // linear system, storage and solution

virtual void fillEssBC();

virtual void integrands (ElmMatVec& elmat, FiniteElement& fe);

virtual void makeAndSolveLinearSystem ();

virtual real f (const Ptv(real)& x, real u); // nonlinear source term

virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient

// needed in Newton Raphson iterations

virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term

virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:

N1Elliptic Q;

“N1Elliptic () {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu); // read and intialize data
virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen

};

class N1Elliptic2 : public N1Elliptic
{
protected: // nonlinear rhs
virtual real f (const Ptv(real)& x, real u); // nonlinear source term
virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term
public:
N1Elliptic2 () {}
“N1Elliptic2) {}
};

class N1Elliptic3 : public N1Elliptic
{
protected: // nonlinear operator
virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient
virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:
N1Elliptic3) {}
“N1Elliptic3 () {}
};
#endif

We define three different test cases: (1) Problem N1Elliptic is a linear, (2) problem
N1MultiGrid2 has a nonlinear right hand side and (3) problem N1MultiGrid3 has a
nonlinar operator. We both implement successive substitution and Newton’s method.
For Newton’s method we provide the derivatives df and dk.

1) -V:-Vu =1 onfQ
2) -V-Vu = €e* onQ (1)
3) =V.e'Vu = 1 onQ

v = 0 ondQ

37

NIElliptic/
main

#include <N1Elliptic.h>
int main (int nargs, const char** args)

{
initDIFFPACK (nargs, args);
global_menu.init ("Nonlinear test case', "N1Elliptic");
int p = 1;
initFromCommandLineArg("-case", p, p /* default is linear, p=1 */);
N1Elliptic *problem;
switch (p) {
case 1: problem = new N1Elliptic();
break;
case 2: problem = new N1Elliptic2();
break;
case 3: problem = new N1Elliptic3();
break;
}
global_menu.multipleLoop (*problem);
delete problem;
return 0;
}

In the main program the user is able to choose between the three different problems.
The nonlinear elliptic scalar problem is solved on the unit square. The integrand is

both suited for succesive substitution and Newton’s method.

#include <N1Elliptic.h>

#include <ElmMatVec.h>

#include <FiniteElement.h>
#include <readOrMakeGrid.h>
#include <createllonLinEqSolver.h>
#include <ErrorEstimator.h>
N1Elliptic:: N1Elliptic () {Z

void N1Elliptic:: adm (MenuSystem& menu)

{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu) ; // read menu answers into class variables and init
}
void N1Elliptic:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"gridfile",
"gridfile",

"filename or PREPROCESSOR=PreproSupElSet/geometry/partition",
"PREPROCESSOR=PreproBox/d=2 [0,1]x[0,1]/d=2 elm_tp=ElmB4n2D\
div=[5,5], grading=[1,1]",
"s"y;

// submenus:

LinEgAdm:: defineStatic (menu, level+1);

38

prm(NonLinEqgSolver) ::defineStatic (menu, level+1);

Store4Plotting:: defineStatic (menu, level+1);
FEM: : defineStatic (menu, level+1);
}
void N1Elliptic:: scan (MenuSystem& menu)
{
String gridfile = menu.get ("gridfile");
grid.rebind (new GridFE(Q)); // create empty grid object
read0rMakeGrid (grid(), gridfile); // £ill grid
Store4Plotting::scan (menu, grid->getNoSpaceDim());
FEM: :scan (menu);
lineq.rebind (new LinEqiAdm());
lineq->scan (menu);
u.rebind (new FieldFE (grid(),"u')); // allocate space for u
dof .rebind (new DegFreeFE (grid(), 1)); // 1 unknown per node
nlsolver_prm.scan (menu);
nonlin_solution.redim (dof->getTotallloDof()); // size = total no of unknowns
linear_solution.redim (dof->getTotalNoDof());
lineq->attach (linear_solution);
nlsolver.rebind (createNonLinEqSolver (nlsolver_prm));
nlsolver->attachUserCode (*this);
nlsolver->attachllonLinSol (nonlin_solution);
nlsolver->attachLinSol (linear_solution);
}
void N1Elliptic:: £illEssBC ()
{
dof->initEssBC (); // init for assignment below

const int nno = grid->getNoNodes();

for (int 1 = 1; i <= nno; i++)
if (grid->Bollode (i)) // is node i subjected any boundary indicator?
dof->fillEssBC (i, 0.0); // homogeneous Dirichlet.

void N1Elliptic:: integrands (ElmMatVec& elmat, FiniteElement& fe)
{
int i,j,s;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)

const real detJxW = fe.detJxW(); // det J times numerical itg.-weight
const int mnsd = fe.getNoSpaceDim(); // space dimension
const real u_pt = u->valueFEM (fe); // U (at present itg. point)

// find the global coord. x of the current integration point:
Ptv(real) x (nsd);

fe.getGlobalEvalPt (x);

real f_value = f£(x, u_pt);

real k_value = k(x, u_pt);

real nablal,nabla2,h;
if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
{

Ptv(real) Du_pt (nsd); // grad U
u->derivativeFEM (Du_pt, fe); // interpolate Du_pt

39

real df_value = df(x, u_pt);
real dk_value = dk(x, u_pt);

for (i = 1; i <= nbf; i++) {
nablal = 0;
for (s = 1; s <= nsd; s++) {
nablal += fe.dN(i,s)*Du_pt(s);
T
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s = 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
h = k_value*nabla2 + dk_valuexfe.N(j)*nablal -
df _valuexfe.N(i)*fe.N(j);
elmat.A(i,j) += hxdetJxW;
T
h = k_value*nablal - f_valuexfe.N(i);
elmat.b(i) -= h*detJxW;
T
T
else if (nlsolver->getCurrentState() .method == SUCCESSIVE_SUBST)
{
for (i = 1; i <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s = 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
elmat.A(i,j) += k_value*nabla2xdetJxW;
T
elmat.b(i) += fe.N(i)*f_valuexdetJxW;
T
T
else
errorFP ("N1Elliptic::integrands",
"Linear subsystem for the nonlinear method %s is not implemented",
getEnumValue (nlsolver->getCurrentState() .method) .chars());
// getEnumValue: returns a string of the enum, .chars() transforms the
// string to a const char#* that can be fed into the printf-like errorFP

void N1Elliptic:: makeAndSolveLinearSystem ()
{

dof->vec2field (nonlin_solution, u()); // copy most recent guess to u

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
dof->fil1EssBC2zero(); // ensure no correction of known values'

else
dof->unfillEssBC2zero();// (set back to) normal treatment of ess. b.c.

makeSystem (dof(), lineq());

// init startvector (linear_solution) for iterative solver:
if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
// start for a correction vector (should -> 0)
linear_solution.fill (0.0);
else
// use most recent nonlinear solution
linear_solution = nonlin_solution;

40

lineq->solve(); // invoke a linear system solver

}

void N1Elliptic:: solveProblem () // main routine of class N1lElliptic

{
£illEssBC O // set essential boundary condition
nonlin_solution.fill (1.0); // set all entries to 1 in start vector
dof->fil11EssBC (nonlin_solution);

// call nonlinear solver:
if (!'nlsolver->solve ())
errorFP ("N1Elliptic::solve");
// load nonlinear solution found by the solver into the u field:
s_o<<'"maximum = "<<nonlin_solution.norm(Linf)<<endl;

dof->vec2field (nonlin_solution, u());
Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void N1Elliptic:: resultReport ()
{
// in small problems (less than 100 nodes), print the nodal error
// values on the file "errors.dat"
if (grid->getNolNodes() < 100)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");

real N1Elliptic:: £ (const Ptv(real)&, real) { return 1.;}
real N1Elliptic:: df (const Ptv(real)&, real) { return 0.;}

real N1Elliptic:: k (const Ptv(real)&, real) { return 1.;}
real N1Elliptic:: dk(const Ptv(real)&, real) { return 0.;}

real N1Elliptic2:: £ (const Ptv(real)%, real u_) { return exp(u_);}
real N1Elliptic2:: df(const Ptv(real)%, real u_) { return exp(u_);}
real N1Elliptic3:: k (const Ptv(real)%, real u_) { return exp(u_);}
real N1Elliptic3:: dk(const Ptv(real)%, real u_) { return exp(u_);}

Exercise 19 Newton and successive substitution.”

(table 20, testl.i, testl.sh)

We do a first exercise with nonlinear solvers comparing Newton’s method and suc-
cesive substitution. This is comparing an asymptotic quadratic convergent iteration
with a linear convergent one. Applied to the linear problem, the result should be
the same: Just one iteration. We now look at the two nonlinear problems: Compare
the number of iterations and the computing time. Look at the convergence rates of
the Newton iteration. When do we obtain quadratic convergence? How do the first
steps look like? Do the comparisons for different tolerances. When is the succesive
substitution faster and at what tolerances is Newton iteration faster?

"files are in NIElliptic/Verify/

41

menu item answer
gridfile PREPROCESSOR=PreproBox/
d=2 [0,1]x[0,1]/
d=2 e=ElmB4n2D
div=[8,8] g=[1,1]

nonlinear iteration method {NewtonRaphson & SuccessiveSubst }
max estimated nonlinear error 1.0e-10
nonlinear iteration stopping criterion 1
basic method GaussElim

Table 20: Newton and successive substitution, test1.1

In the case Newton’s iteration does not converge, a damping strategy can be employed

at the first steps. Convergence is enforced via smaller corrections as long as an

attractor is reached. Damping strategies usually use some additional assumptions
and heuristics.

Especially for large equations sytems the computation of the Jacobian matrix may

be quite expensive. A general modification often used is an approximative Jacobian

matrix. Such approximations may be computed via numerical differentiation or some
updates of older Jacobians.

5.2 Inexact solver

Newton iteration

multigrid

linear smoother

Figure 14: Newton-multilevel

One way of combining multigrid and nonlinear solvers is to use linear multigrid

inside a nonlinear solver. We use successive substitution or Newton’s method and

solve the linear systems by multigrid either exactly or only approximatly using one
cycle. This method is called Newton-Multilevel. The difference between the Newton el
iteration and successive substitution is roughly, that we expect the Newton method

to converge quadratically in the vicinity of a solution, while the substitution method

only converges linearly. This resembles in the question to find appropriate starting

vectors close enough to the solution and a desired precision small enough to really

achieve quadratic convergence.

Each iterate of the Newton method with exact Jacobian is also more expensive to
compute than succesive substitution. The substitution method neglects the deriva-
tives instead.

42

succesive substitution

multigrid

linear smoother

Figure 15: Successive substitution-multilevel

The question whether to use only one multigrid cycle or more to solve up to a certain
tolerance is a trade off between the cost of a nonlinear matrix update and the cost of
a linear multigrid cycle. This of course strongly depends on the problem we want to
solve. If one multigrid cycle is not precise enough, we certainly will loose the quadratic
convergence property of the Newton method, obtaining only linear convergence. This
may be circumvented using a thorough termination criterion for the inner multigrid
iteration being precise enough.

Exercise 20 Inezact linear solvers.®

(table 21, test2.1i, test2.sh)

menu item answer
gridfile PREPROCESSOR=PreproBox/
d=2 [0,1]x[0,1]/
d=2 e=ElmB4n2D
div=[8,8] g=[1,1]

nonlinear iteration method {NewtonRaphson & SuccessiveSubst}
basic method ConjGrad
#1: convergence monitor name CMRelResidual
#1: max error 1.0e-2

Table 21: Inexact linear solvers, test2.1

A second exercise is some kind of preparation for the use of multigrid as a linear
solver inside a nonlinear solver. The nonlinear solver is designed to operate with
exact solutions of the given linear problems. Solving the linear problems iteratively
of course means disturbing the outer nonlinear loop. We start experimenting with
some convergence criteria and have a look whether convergence is still given. We
compare the total ammount of work or the computing times. Choose a relative and an
absolute residual based criterion for an inner conjugated gradient linear solver. The
outer loop may be Newton’s iteration and successive substitution. Fix the tolerance
for the outer iteration. Compare different tolerances for the inner iteration. When do
we have a convergent method and what is the optimal tolerance, always measuring
computational work? What criterion and what nonlinear iteration is preferable?
What is the relation between inner loop and outer loop tolerance?

%files are in NIElliptic/Verify/

43

nested iteration

nonlinear solver

Figure 16: Nested iteration

The question of a good start vector for nonlinear solvers is crucial. It is a question if
the algorithm will converge and which will be the result if there are several solutions
of the nonlinear equation. In the context of multigrid methods there is the idea of
nested iteration constructing start vectors (or cascadic iteration). Like in chapter
3.4 we use the solution computed on one grid as a start solution for the iteration on
the next finer grid. We repeat that there are benefits of higher order interpolation
here. In the case of a Newton iteration (or any other nonlinear solver), we start the
iteration on one level with an interpolation of a solution on the next coarser grid.
This idea is independent on the use of multigrid inside this nonlinear solver. However

the grid hierarchy can be reused efficiently. This is called multilevel-Newton.

Combining both methods, we end up with a multilevel-Newton-multilevel type algo-
rithm. The decision, which of several solutions the iteration is converging to, may be
taken on the coarsest grid. If that solution is close enough to the continuous solution,
and the chain of nested spaces are “close” enough, the solution is then determined
and convergence is given. This condition is not precise at all. In practice it would be
difficult to modify the hierarchy of grids just to ensure convergence of the nonlinear
method. We also want to mention, that the number of solutions on the coarse grids
may be misleading. Not all of them have to be present (or separate) on the coarsest
grid. Solutions may develop (or fork off) at a certain discretization level.

We leave the implementation of the (multilevel-)Newton-multilevel to the reader.

Combine the examples MultiGridl and N1E1liptic. Substitute the use of LinEqAdm
in N1E1liptic: :MakeAndSolveSystem by a call of a multigrid solver.

nonlinear multigrid

nonlinear smoother

Figure 17: Nonlinear multigrid

5.3 Nonlinear multigrid

Instead we turn to another way of using multigrid methods for nonlinear problems:
Nonlinear multigrid. The idea is to use the multigrid cycle as the outer loop and
dealing with the nonlinearity inside the multigrid method. Since restriction and
prolongation operators are not affected by the nonlinearity of the problem, we only
have to deal with smoothers for nonlinear problems. The computation of a residual

44

is just the evaluation of the (nonlinear) operator. As smoothers we can use standard
nonlinear solvers, like nonlinear versions of SOR, Jacobi, conjugated gradients and
S0 on.

The problem now is that we have to decide where to evaluate the operator for all
these operations. In the linear case this did not matter. On the finest grid this is
clear: We have to use the latest version of the nonlinear solution. However on coarser
grids, it is not longer clear, what the latest nonlinear solution really is. That is why
there are several nonlinear multigrid versions around. They differ exactly in that
detail. One idea is to use the restriction of the latest version of the fine grid (FAS,
full approximation scheme) and another is to use the best solution available during

a nested iteration setup. A third version uses linear combinations of both.?
NIMultiGrid1

#ifndef N1MultiGridi_h_IS_INCLUDED
#define N1MultiGridi_h_IS_INCLUDED

t#tinclude <FEM.h> // FEM algorithms, FieldFE, GridFE etc
#include <DegFreeFE.h> // mapping: nodal values -> linear system vec
#include <LinEgAdm.h> // linear systems, storage and solution

#include <NonLinEqSolverUDC.h> // user’s class interface to nonlinear solvers
#include <NonLinEqSolver_prm.h> // parameters for nonlinear solvers

#include <NonLinEqSolver.h> // interface to nonlinear solvers
#include <Store4Plotting.h>

#include <DDSolver.h> // DDSolver

#include <DDSolverUDC.h> // interfacing to DDSolver
#include <DDSolver_prm.h> // DDSolver parameters

#include <VecSimplest_Handle.h>
class NlLevel : public FEM, public NonLinEqSolverUDC, public virtual HandleId
{

protected:
// general data:
Handle (GridFE) grid; // finite element grid
Handle (FieldFE) u; // finite element field, the primary unknown
Handle (Proj) proj; // projection operators

Handle (DegFreeFE) dof, dof2; // mapping: nodal values <-> linear system unknowns

Handle (Vec (WUMT)) nonlin_solution; // nonlinear solution

Vec (WUMT) linear_solution; // solution of linear subsystem
Handle(LinEqVector) linear_rhs; // rhs of linear subsystem
prun(NonLinEqgSolver) nlsolver_prm; // parameters for solver
Handle(NonLinEqSolver) nlsolver; // nonlinear solver

Handle (LinEgAdm) lineq; // linear system, storage and solution

virtual void fillEssBC();

virtual void integrands (ElmMatVec& elmat, FiniteElement& fe);

virtual void makeAndSolveLinearSystem ();

virtual real f (const Ptv(real)& x, real u); // nonlinear source term

virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient

// needed in Newton Raphson iterations

virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term

virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:

?you will find the complete code in N1MultiGridi/

45

NlLevel ();
“NlLevel () {}

static void defineStatic (MenuSystem& menu, int level = MAIN);
virtual void scan (MenuSystem& menu, String% geometry, String& partition);

virtual void attachSol(DDSolver& ddsolver, Spaceld i);
virtual void attachRhs(DDSolver& ddsolver, Spaceld i);
virtual DegFreeFE& getDof();

virtual void initProj(DegFreeFE& dofTo);

virtual Vec(NUMT)& getNonLinSolution();

virtual BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,

StartVectorMode start, DDSolverMode mode) ;

virtual void residual (LinEqVector& b, LinEqVector& x, LinEqVector& r);

virtual void matVec (const LinEqVector% b, LinEqVector& x);

virtual BooLean transfer (const LinEqVector fv, LinEqVector& tv,
BoolLean add_to_t, DDTransferMode, TransposelMode trans);

virtual int getWorkTransfer () const;
virtual real getStorageTransfer () const;
virtual int getWorkSolve () const;
virtual real getStorageSolve () const;

CLASS_INFO
};

#tdefine ClassType NlLevel
#include <Handle.h>
#tundef ClassType

#define Type Handle(NlLevel)
#include <VecSimplest.h>
#undef Type

class NlLevelf : public NlLevel
{
protected: // nonlinear rhs
virtual real f (const Ptv(real)& x, real u); // nonlinear source term
virtual real df(const Ptv(real)& x, real u); // d/du of nonlinear source term
public:
NlLevelf () {3}
“NlLevelf () {}
};

class NlLevelk : public NlLevel
{
protected: // nonlinear operator
virtual real k (const Ptv(real)& x, real u); // nonlinear coefficient
virtual real dk(const Ptv(real)& x, real u); // d/du of nonlinear coefficient
public:
NlLevelk () {2}
“NlLevelk () {}
};

class N1MultiGridl : public MenuUDC, public Store4Plotting,
public NonLinEqSolverUDC, public DDSolverUDC

{
protected:

46

// general data:
VecSimplest (Handle(NlLevel)) level; // refinement levels
Handle (DegFreeFE) dof; // mapping: nodal values <-> linear system unknowns

Handle(FieldFE) u; // finite element field, the primary unknown
Handle (Vec (WUMT)) nonlin_solution; // nonlinear solution
Handle (Vec (NUMT)) linear_solution; // solution of linear subsystem
prun(NonLinEqgSolver) nlsolver_prm; // parameters for solver
Handle(NonLinEqSolver) nlsolver; // nonlinear solver
int no_of_grids; // multigrid levels
prm(DDSolver) ddsolver_prm; // parameters multigrid solver
Handle (DDSolver) ddsolver; // multigrid solver

public:

N1MultiGridl Q;
“N1MultiGridl O {}

virtual void adm (MenuSystem& menu) ;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan (MenuSystem& menu); // read and intialize data
virtual void solveProblem (); // main driver routine

virtual void resultReport (); // write error norms to the screen

// DDSolverUDC
Spaceld getNoOfSpaces() const; // no_of_grids
BooLean solveSubSystem (LinEqVector& b, LinEqVector& x,

Spaceld space, StartVectorlMode start, DDSolverMode mode=SUBSPACE) ;
// apply smoother
void residual (LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space);
void matVec (const LinEqVector& b, LinEqVector& x, Spaceld space); // apply operator
BoolLean transfer (const LinEqVector& fv, Spaceld fi,

LinEqVector& tv, Spaceld ti,
BoolLean add_to_t= dpFALSE, DDTransferMode=TRANSFER); // apply proj

virtual int getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork work_tp) const;
virtual real getStorageTransfer (Spaceld fi, Spaceld ti) const;
virtual int getWorkSolve (Spaceld space, const PrecondWork work_tp) const;
virtual real getStorageSolve (Spaceld space) const;
String comment ();
s
#endif

We use the nonlinear solver interface twice. The class N1MultiGrid1 calls a nonlinear
multigrid. Inside the multigrid we make use of nonlinear solves as smoothers on each
grid. Therefore we use a second class N1Level derived from NonLinEqSolverUDC
that implements the smoothers. At this level we also have to specify the differential
equation respectively the intergrands and the coefficients. The smoother itself looks
similar to the nonlinear solvers discussed previously. We use a vector of NlLevel

classes, for each grid level one instance of N1Level. NIMultiGrid1/
main

#include <N1MultiGridil.h>
int main (int nargs, const char** args)

{

47

initDIFFPACK (nargs, args);

global_menu.init ("Nonlinear test case', "N1MultiGridi');
N1MultiGridl problem;

global_menu.multipleLoop (problem);

return 0;

The code implements first the nonlinear smoothers N1Level and second the nonlinear
multigrid around N1MultiGridl. There are different problems to select, a linear one,
one with a nonlinear right hand side and one with a nonlinear operator as in the
nonlinear example code N1Elliptic (equation 1). The implementation for linear
right hand side or linear operator is not optimal since the assembly is repeated several
times. In an implementation dedicated to a specific problem this should be optimized.

NIMultiGrid1.C

#include <N1MultiGridil.h>
#include <ElmMatVec.h>

#include <FiniteElement.h>
#include <createllonLinEqSolver.h>
#include <ErrorEstimator.h>
#include <PreproBox.h>

#include <createElmDef.h>
#include <NonLinDD.h>

#include <createDDSolver.h>

#define Type Handle(NlLevel)
#include <VecSimplest.C>
#undef Type

NlLevel:: NlLevel () {}

INIT_CLASS_INFO(NlLevel)

void NlLevel:: defineStatic (MenuSystem& menu, int level)

{
LinEgAdm:: defineStatic (menu, level+1);
prm(NonLinEqgSolver) ::defineStatic (menu, level+1);
FEM: : defineStatic (menu, level+1);
}

void NlLevel:: scan (MenuSystem& menu, String& geometry, String& partition)
{
grid.rebind (new GridFE(Q)); // create empty grid object
PreproBox p;
p.geometryBox() .scan (geometry);
p-partitionBox() .scan (partition);
p.generateMesh (grid()); // £ill grid

u.rebind (new FieldFE (grid(),"u")); // allocate, with field name "u"
FEM: :scan (menu);

lineq.rebind (new LinEqAdm());

lineq->scan (menu);
dof .rebind (new DegFreeFE (grid(), 1)); // 1 unknown per node

48

nlsolver_prm.scan (menu);

linear_solution.redim (dof->getTotallNoDof());
nonlin_solution.rebind (new Vec(NUMT));
nonlin_solution->redim (dof->getTotallloDof ());
lineq->attach (linear_solution);

nlsolver.rebind (createNonLinEqSolver (nlsolver_prm));
nlsolver->attachUserCode (*this);
nlsolver->attachLinSol (linear_solution);

void NlLevel:: attachSol(DDSolver& ddsolver, Spaceld i)
{
nonlin_solution->fill (0.0);
ddsolver.attachLinSol(nonlin_solution(), i);

}

void NlLevel:: attachRhs(DDSolver& ddsolver, Spaceld i)
{

Handle (Vec (NUMT)) z;

z.rebind (new Vec (NUMT)) ;

z->redim(dof->getTotallNoDof ());

Handle(LinEqVector) zero;

zero.rebind(new LinEqVector(z()));

zero() = 0.;

ddsolver.attachLinRhs(zero(), i, dpTRUE);

DegFreeFE& NlLevel:: getDof ()
{ return dof(); }

Vec (NUMT)& NlLevel:: getNonLinSolution()
{ return nonlin_solution(); }

void NlLevel:: initProj(DegFreeFE& dofTo) // next finer grid
{
dof2.rebind (&dofTo) ;
fillEssBCQ);
proj.rebind(new ProjInterpSparse());
proj->rebindDOF(dof (), dofTo);
proj->init();

}
void NlLevel:: £fillEssBC ()
{
dof->initEssBC (); // init for assignment below
const int nno = grid->getNoNodes();
for (int 1 = 1; i <= nno; i++)
if (grid->Bollode (i)) // any boundary indicator?
dof->fillEssBC (i, 0.0); // homogeneous Dirichlet.
}

void NlLevel:: integrands (ElmMatVec& elmat, FiniteElement& fe)

{
int i,j,s;
const int nbf = fe.getNoBasisFunc(); // no of nodes (or basis functions)
const real detJxW = fe.detJxW(); // det J times numerical itg.-weight
const int mnsd = fe.getNoSpaceDim(); // space dimension

49

const real u_pt = u->valueFEM (fe); // U (at present itg. point)

// find the global coord. x of the current integration point:
Ptv(real) x (nsd);
fe.getGlobalEvalPt (x);

const real f_value = f(x, u_pt);
const real k_value = k(x, u_pt);

real nablal,nabla2,h;

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
{
Ptv(real) Du_pt (nsd); // grad U
u->derivativeFEM (Du_pt, fe); // interpolate Du_pt
const real df_value = df(x, u_pt);
const real dk_value = dk(x, u_pt);

for (i = 1; i <= nbf; i++) {
nablal = 0;
for (s = 1; s <= nsd; s++) {
nablal += fe.dN(i,s)*Du_pt(s);
}
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s = 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
h = k_value*nabla2 + dk_valuexfe.N(j)*nablal -
df _valuexfe.N(i)*fe.N(j);
elmat.A(i,j) += hxdetJxW;
}
h = k_value*nablal - f_valuexfe.N(i);
elmat.b(i) -= h*detJxW;

}
}
else if (nlsolver->getCurrentState() .method == SUCCESSIVE_SUBST)
{
for (i = 1; i <= nbf; i++) {
for (j = 1; j <= nbf; j++) {
nabla2 = 0;
for (s = 1; s <= nsd; s++)
nabla2 += fe.dN(i,s)*fe.dN(j,s);
elmat.A(i,j) += k_value*nabla2xdetJxW;
}
elmat.b(i) += fe.N(i)*f_valuexdetJxW;
}
}
else

errorFP ("NlLevel: :integrands",
"Linear subsystem for the nonlinear method %s is not implemented",
getEnumValue (nlsolver->getCurrentState() .method) .chars());

// getEnumValue: returns a string of the enum, .chars() transforms the

// string to a const char#* that can be fed into the printf-like errorFP

void NlLevel:: makeAndSolveLinearSystem ()
{

dof->vec2field (nonlin_solution(), u()); // copy most recent guess to u

50

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
dof->fil1EssBC2zero(); // ensure no correction of known values'

else
dof->unfillEssBC2zero();// (set back to) normal treatment of ess. b.c.

makeSystem (dof(), lineq());
lineq->attach (linear_solution);
lineq->bl() .add(lineq->bl(), linear_rhs());

// init startvector (linear_solution) for iterative solver:
if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)
// start for a correction vector (should -> 0)
linear_solution.fill (0.0);
else
// use most recent nonlinear solution
linear_solution = nonlin_solution();

lineq->solve(); // invoke a linear system solver

BooLean NlLevel:: solveSubSystem (
LinEqVector& b, LinEqVector& x, StartVectorMode start, DDSolverMode)

nonlin_solution.rebind(CAST_REF(x.vec(), Vec(NUMT)));
nlsolver—>attachNonLinSol (nonlin_solution());

linear_rhs.rebind(b);
if (start==ZERO_START)

nonlin_solution->fill (0.0); // set all entries to 0 in start vector
£illEssBC O // set essential boundary condition
dof->fil11EssBC (nonlin_solution());

// call nonlinear solver:
nlsolver->solve ();
return dpTRUE;

void NlLevel:: residual (LinEqVector& b, LinEqVector& x, LinEqVectorZ r)
{
if (notBooLean(lineq->ok(dpTRUE)))
errorFP("NlLevel: :residual");
dof->vec2field (CAST_REF(x.vec(), Vec(NUMT)), u());
makeSystem (dof(), lineq());

lineq->getLinEqSystem ().attach (x);
lineq->getLinEqSystem ().residual(r);
r.add(r, b);

void NllLevel:: matVec (const LinEqVector% x, LinEqVector& f)
{
dof->vec2field (CAST_REF(x.vec(), Vec(NUMT)), u());
makeSystem (dof(), lineq());

lineq->getLinEqSystem ().attach ((LinEqVector&)x);
lineq->getLinEqSystem ().residual(f);

Vec(NUMT) &ff = CAST_REF(f.vec(), Vec(NUMT));
£f.mult(-1.);

51

BooLean NlLevel:: transfer (
const LinEqVector& fv, LinEqVector& tv,
BooLean add_to_t, DDTransferlMode mode, TransposeMode trans)
{
proj->apply(fv, tv, trans, add_to_t);
Vec(NUMT)& t = CAST_REF(tv.vec(), Vec(NUMT));
if ((trans==TRANSPOSED)&&(mode==TRANSFER_NESTED)) { // FAS
Vec(NUMT)& t = CAST_REF(tv.vec(), Vec(NUMT));
dof-> £illEssBC(t);
T
return dpTRUE;

int NlLevel:: getWorkTransfer () const
{ return proj->getWork(); }

real NlLevel:: getStorageTransfer () const
{ return proj->getStorage(); }

int NlLevel:: getWorkSolve () comnst
{ return ((LinEqAdm&)lineq()).getLinEqSystem ().getWork(); }

real NlLevel:: getStorageSolve () const
{ return ((LinEqAdm&)lineq()).getLinEqgSystem ().getStorage(); }

real NlLevel:: f (const Ptv(real)&, real) { return 1.;}
real NlLevel:: df (const Ptv(real)&, real) { return 0.;}

real NlLevel:: k (const Ptv(real)&, real) { return 1.;}

real NlLevel:: dk(const Ptv(real)&, real) { return 0.;}

real NlLevelf:: £ (const Ptv(real)&, real return exp(u_);}
real NlLevelf:: df (const Ptv(real)&, real u_ return exp(u_);}

real NllLevelk:: k (const Ptv(real)&, real u_) { return exp(u_);}
real NllLevelk:: dk(const Ptv(real)&, real u_) { return exp(u_);}
[

N1MultiGridi:: N1MultiGridl () {}

void N1MultiGridl:: adm (MenuSystem& menu)

{
MenuUDC: :attach (menu); // enables later access to menu arg. as menu_system—>
define (menu); // define/build the menu
menu.prompt () ; // prompt user, read menu answers into memory
scan (menu) ; // read menu answers into class variables and init
}
void N1MultiGridl:: define (MenuSystem& menu, int level)
{
menu.addItem (level,
"problem", // menu command/name
"problem", // command line option: +nsd
"1 linear, 2 rhs, 3 coeff",
R AN // default answer

52

"I[1:3]1"); // valid answer: 1 integer

// the domain is fixed: [0,1] nsd
menu.addItem (level,
"no of grid levels", // menu command/name

"level", // command line option: +level
"no of uniform refinements",

g, // default answer (4 levels)
"I1'); // valid answer: 1 integer

menu.addItem (level,
"no of space dimensions", // menu command/name

"nsd", // command line option: +nsd
m

", // default answer (2D problem)
"I1'); // valid answer: 1 integer

menu.addItem (level,
"element type", // menu item command/name

"elm_tp", // command line option (+elm_tp here)
"classname in ElmDef hierarchy",
"E1lmB4n2D", // default answer

// valid answers are the classnames in the ElmDef hierarchy
// where all the elements in Diffpack are defined:
validationString(hierElmDef())); // list all the classnames

// submenus:
prun(NonLinEqgSolver) ::defineStatic (menu, level+1);

prm(DDSolver) ::defineStatic (menu, level+l);
Store4Plotting ::defineStatic (menu, level+l);
menu.setCommandPrefix("smoother");

NlLevel ::defineStatic (menu, level);

menu.unsetCommandPrefix () ;

void N1MultiGridl:: scan (MenuSystem& menu)

{

// load answers from the menu:
no_of_grids = menu.get ("no of grid levels").getInt();
level.redim (no_of_grids);

ddsolver_prm.scan(menu) ;
ddsolver = createDDSolver(ddsolver_prm) ;
ddsolver—->attachUserCode (*this) ;

int nsd = menu.get ("no of space dimensions").getInt();
Store4Plotting::scan (menu, nsd);

int p = menu.get ("problem").getInt();
int 1i;
for (i=1; i<=no_of_grids; i++)
switch (p) {
case 1: level(i).rebind (new NlLevel());
break;
case 2: level(i).rebind (new NlLevelf());
break;
case 3: level(i).rebind (new NlLevelk());
break;
default: fatalerrorFP("N1MultiGridl:: scan","illegal problem number'");

53

// ---- make grid using a box preprocessor and the menu information: ----
// construct the right syntax for the box preprocessor:
// d4=2 [0,1]1x[0,1]
// d=2 elm_tp=ElmB4n2D [2,2] [1,1]
// this must valid for any nsd so we must make some string manipulations:
String geometry = aform('d=%d ",nsd); // e.g. "d=2"
String grading = "[";
for (1 = 1; 1 <= nsd; i++) {
if (i < nsd) {
geometry += "[0,1]x"; grading += "1,";
} else {
geometry += "[0,1]"; grading += "1";
}
}

grading += "]1";

String elm_tp = menu.get ("element type');
menu.setCommandPrefix("smoother");

int d = 1;
for (i=1; i<=no_of_grids; i++) {
d x= 2;
int j;
String part = "["; // partition string e.g. [2,2]

for (j=1; j<=nsd; j++) {

part += aform("%d4d",d);

if (j<nsd)

part += ",";

}
part += "]";
String partition = aform("d=}d elm_tp=Ys div=Ys grading=is",
nsd,elm_tp.chars() ,part.chars(),

grading.chars());

level(i)->scan (menu, geometry, partition);
level(i)->attachSol (ddsolver(), i);
level(i)->attachRhs (ddsolver(), i);

}

menu.unsetCommandPrefix () ;

for (i=1; i<no_of_grids; i++)
level(i)->initProj (level(i+1)->getDof());

dof .rebind (level(no_of_grids)->getDof());

u.rebind (new FieldFE (level(no_of_grids)->getDof().grid(),"u"));
// allocate, with field name 'u"

nlsolver_prm.scan (menu);

linear_solution.rebind (level(no_of_grids) ->getNonLinSolution());
nonlin_solution.rebind (new Vec(NUMT));
nonlin_solution->redim(level(no_of_grids) ->getDof () .getTotallloDof());

nlsolver.rebind (createNonLinEqSolver (nlsolver_prm));
nlsolver—->attachLinSol (linear_solution());
nlsolver->attachllonlinSol (nonlin_solution());
nlsolver->attachUserCode (*this);

54

NonLinDD& sol = CAST_REF(nlsolver(), NonLinDD);
sol.attach (ddsolver());
}

void N1MultiGridl:: solveProblem () // main routine of class N1MultiGridil
{
nonlin_solution->fill (1.0); // set all entries to 1 in start vector
level(1)->getNonLinSolution() .£ill (1.0);

// call nonlinear solver:
if (!'nlsolver->solve ())
errorFP ("N1MultiGridl: :solve",'"failed");
// load nonlinear solution found by the solver into the u field:
s_o<<"maximum = "<<nonlin_solution->norm(Linf)<<endl;

dof->vec2field (nonlin_solution(), u());
Store4Plotting: :dump (u()); // dump for later visualization
lineCurves(u());

void N1MultiGridl:: resultReport ()
{
// in small problems (less than 100 nodes), print the nodal error
// values on the file "errors.dat"
if (dof->getTotallloDof() < 100)
u->values () .print ("FILE=u.dat","Nodal values of the solution field");

Spaceld N1MultiGridl:: getNoOfSpaces() const
{ return no_of_grids; }

BooLean N1MultiGridi:: solveSubSystem (

LinEqVector& b, LinEqVector& x,

Spaceld space, StartVectorlMode start, DDSolverlode mode)
{ return level(space)->solveSubSystem(b, x, start, mode); }

void N1MultiGridl:: residual (
LinEqVector& b, LinEqVector& x, LinEqVector& r, Spaceld space)
{ level(space)->residual(b, x, r); }

void N1MultiGridl:: matVec (const LinEqVector% b, LinEqVectorZ x, Spaceld space)
{ level(space)->matVec(b, x); }

BooLean N1MultiGridl:: transfer (
const LinEqVector& fv, Spaceld fi, LinEqVector& tv, Spaceld ti,
BooLean add_to_t, DDTransferMode mode)

{
if (fi == ti-1) // prolongation
level (fi)->transfer(fv, tv, add_to_t, mode, NOT_TRANSPOSED);
else if (fi == ti+1) // restriction
level (ti)->transfer(fv, tv, add_to_t, mode, TRANSPOSED);
else fatalerrorFP("N1MultiGridil:: transfer","from %d to %d4d", fi, ti);
return dpTRUE;
}

int N1MultiGridl:: getWorkTransfer (Spaceld fi, Spaceld ti, const PrecondWork) const

{
if (fi == ti-1)
return level(fi)->getWorkTransfer();

55

if (fi == ti+1)
return level(ti)->getWorkTransfer();
return 0;

}

real N1MultiGridl:: getStorageTransfer (Spaceld fi, Spaceld ti) const
{
if (£fi == ti-1)
return level(fi)->getStorageTransfer();
return 0;

}

int N1MultiGridl:: getWorkSolve (Spaceld space, const PrecondWork) const
{ return level(space)->getWorkSolve(); }

real N1MultiGridl:: getStorageSolve (Spaceld space) const
{ return level(space)->getStorageSolve(); }

String N1MultiGridi:: comment ()
{ return "N1MultiGridl nonlinear multigrid test"; }

5.4 Experiments

Exercise 21 Nonlinear multigrid methods.

(table 22, test1.1)

menu item answer
problem {1&2& 3}
no of grid levels 4
no of space dimensions 2
element type ElmB4n2D
nonlinear iteration method NonLinDD
max estimated nonlinear error 1.0e-10
nonlinear iteration stopping criterion 3

domain decomposition method

{NonlinearMultigrid &
NestedFASMultigrid &

FASMultigrid }
cycle type gamma 1
nested cycles 3
nonlinear damping 0.1
smoother basic method SOR
smoother max iterations 2
smoother nonlinear iteration method SuccessiveSubst
smoother max nonlinear iterations 1
smoother convergence reports 0

Table 22: Nonlinear multigrid methods, test1.1

56

The first exercise'® with the nonlinear multigrid method is a comparison of the dif-
ferent nonlinear multigrid versions. We use a standard V;; cycle with a succesive
substitution smoother using one iteration SOR. We compare the nested FAS scheme
(with damping), the nonlinear multigrid proposed by Hackbusch [Hac85] and the
FAS scheme started with zero on the finest grid. Compare the number of iterations
and the computing time. Which method performs best (or fails at a test)? Compare
nonlinear multigrid methods with and without damping. How does the damping af-
fect the stability of the method? Wht are good damping values? Which of the three
problems is the hardest problem concerning stability?

In the case the initial guess is critical for convergence or the selection of a specific
solution, a damping strategy may be necessary. Take a look at the implementation
of damping (nonlinear damping) and how the damping procedure getSigma() in
...DampedMultigrid may be extended.

Exercise 22 Nonlinear nested multigrid.

(table 23, test2.1)

menu item answer
problem {2 & 3}
domain decomposition method NonlinearMultigrid
nested cycles {1&2&3&4 &5}

Table 23: Nounlinear nested multigrid, test2.1

There are lots of parameters and details to tune. We change the number of cycles
in the nested iteration comparing nested FAS and nonlinear multigrid. We use the
Vi1 cycle and one nonlinear SOR smoothing step. Find an optimal cycle parameter.
What happens if there are not enough cycles on a level? How robust are the methods?

A way of increasing robustness in nonlinear multigrid is applying damping. Now have
a look at the damping parameter in the nonlinear multigrid. The factor is relative
to the vetor norm of the residual. What are valid damping values? What happens
with very large and with very small values? Do you observe some stabilization or
increased robustness adjusting the damping parameter?

Exercise 23 Nonlinear smoothers.

(table 24, test3.1)

We now look at the inner smoothing iteration. We have two parameters at hand:
The number of nonlinear smoothing iterations and the number of linear steps inside.
We use successive substitution and a linear SOR iteration inside. We compare the
number of multigrid iterations needed and we also compare the computation times.
First we fix the number of linear SOR iterations to one. What is the optimal number
of smoothing steps?

Yfiles are in NIMultiGrid1/Verify/

57

menu item answer

problem {2 & 3}
smoother basic method SOR
smoother max iterations {1& 2 &4}

smoother max nonlinear iterations | {1 & 2 & 4}

Table 24: Nonlinear smoothers, test3.1

What happens if we use only half the number of smoothing steps but twice the
number of linear SOR cycles? The computing time for each step will be lower, but
the convergence of the nonlinear multigrid probably suffers. Find a good balance of
both linear and nonlinear iteration.

Think of using a relative termination criterion for the nonlinear smoothing iteration.
Can you figure out some appropriate tolerance values?

6 Summary

In this report we have presented Diffpack simulators that use multigrid equation
solvers. It is meant as an introduction and a tutorial for the multigrid algorithms
available in Diffpack. We did not explain details or syntax of the programs assuming
familiarity with Diffpack and refer to [Lan94]. For mathematical details of the
multigrid algorithms we have referred to the literature[Bri87, Joh87, Wes92] and
[Hac85, Bra93]. For the discussion of the related domain decomposition methods
available in this framework we refer to [Zum96a]. We also want to refer to [Zum96b]
for more advanced topics concerning different grids, different differential operators
and different discretizations.

The main solution algorithms discussed in this report were:

e (multiplicative) multigrid

e nested multigrid

e multigrid as preconditioner

e additive multigrid as preconditioner

e Newton’s method

e successive substitution (Picard iteration)
e nonlinear multigrid

e nonlinear nested multigrid
The domain decomposition and multigrid interface DDSolverUDC is based on

e solveSubSystem implements the smoother §

58

e transfer implements the restriction R;;_; and prolongation R;_; ;

e optional residual implements the evaluation of the residual b — L;z

59

References

[BLY6]

[BPX90]

[Bra73]

[Bra93]

[Bri87]

[Fed64]

[Hac85]

[Joh87]

[Lan94]

[MMMO93]

[Wes92]

[Zum96a]

[Zum96b]

A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools for solv-
ing partial differential equations; Diffpack. In M. Dehlen and A. Tveito,
editors, Numerical Methods and Software Tools in Industrial Mathematics.
Birkhiuser, 1996.

J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel precondition-
ers. Math. Comp., 55:1-22, 1990.

A. Brandt. Multi-level adaptive technique (MLAT) for fast numerical
solution to boundary value problems. In H. Cabannes and R. Teman,
editors, Proceedings of the Third International Conference on Numerical
Methods in Fluid Mechanics, volume 18 of Lecture Notes in Physics, pages
82-89, Berlin, 1973. Springer—Verlag.

J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes
in Mathematical Sciences. Longman Scientific & Technical, Essex, Eng-
land, 1993.

W. L. Briggs. A Multigrid Tutorial. STAM Books, Philadelphia, 1987.

R. P. Fedorenko. The speed of convergence of one iteration process. Z.
Vycisl. Mat. 1. Mat. Fiz., 4:559-563, 1964. Also in U.S.S.R. Comput.
Math. and Math. Phys., 4 (1964), pp. 227-2356.

W. Hackbusch. Multi-Grid Methods and Applications. Springer, Berlin,
1985.

C. Johnson. Numerical Solution of Partial Differential Equations by the
Finite Element Method. Cambridge University Press, Cambridge, 1987.

H. P. Langtangen. Getting started with finite element programming in
Diffpack. Technical Report STF33 A94050, SINTEF Informatics, Oslo,
1994.

N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors. Sizth Cop-
per Mountain Conference on Multigrid Methods, volume CP 3224, Hamp-
ton, VA, 1993. NASA.

P. Wesseling. An Introduction to Multigrid Methods. John Wiley & Sons,
Chichester, 1992.

G. W. Zumbusch. Domain decomposition methods in Diffpack. Technical
report, SINTEF Applied Mathematics, Oslo, 1996.

G. W. Zumbusch. Multigrid methods in Diffpack, advanced features. Tech-
nical report, SINTEF Applied Mathematics, Oslo, 1996. in preparation.

60

