
Data Dependence Analysis for the
Parallelization of Numerical Tree Codes

Gerhard Zumbusch

Friedrich-Schiller-Universität Jena,
Institut für Angewandte Mathematik,

Ernst-Abbe-Platz 2, 07743 Jena, Germany
zumbusch@mathe.uni-jena.de
http://cse.mathe.uni-jena.de

Abstract. Data dependence analysis for automatic parallelization of
sequential tree codes is discussed. Hierarchical numerical algorithms of-
ten use tree data structures for unbalanced, adaptively and dynamically
created trees. Moreover, such codes often do not follow a strict divide
and conquer concept, but introduce some geometric neighborhood data
dependence in addition to parent-children dependencies. Hence, recog-
nition mechanisms and hierarchical partition strategies of trees are not
sufficient for automatic parallelization. Generic tree traversal operators
are proposed as a domain specific language. Additional geometric data
dependence can be specified by code annotation. A code transformation
system with data dependence analysis is implemented, which generates
several versions of parallel codes for different programming models.

1 Introduction

Automatic parallelization of general sequential, imperative code is one of the ul-
timate goals of compiler construction. Numerical algorithms in scientific comput-
ing can often be parallelized efficiently with a data parallel approach. Basically
there are three related problems to address: First the data partition problem,
second the mapping problem where sets of partitions are mapped to a processor,
and third the data dependence analysis where to add communication opera-
tions in a distributed memory environment and synchronization operations in a
shared memory environment. Both partitioning and mapping can be hard prob-
lems depending on the data dependence graph. The data dependence analysis
itself can be technically too complex for compilers. However, often there exist
good solutions for the problems known in the specific area of application. For
example additional geometric information along with a geometric partition of
data may work very well and may break general NP-hard problems, but such a
solution can be impossible to derive solely from a given sequential code. Hence,
parallelization of codes written in a domain specific languages may be possible,
while parallelization in general is not feasible.

In this paper, we restrict ourselves to hierarchical tree methods, such as fast
summation algorithms for N -body simulations and the fast multipole method.

B. K̊agström et al. (Eds.): PARA 2006, LNCS 4699, pp. 890–899, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Data Dependence Analysis for the Parallelization of Numerical Tree Codes 891

Given a large number of geometric entities, the numerical algorithms approxi-
mate the sum over expensive N(N − 1)/2 pair wise interactions by combining
the action of groups of entities with others distant away. This can be done hier-
archically, which leads to an unbalanced k-ary tree. Algorithms work bottom-up
for the computation of groups, top-down for the action of groups on other groups
or entities and use local neighborhood data on each tree level for pair wise in-
teractions. The overall complexity under reasonable assumptions is reduced to
O(N logN) or O(N), depending on the algorithm and the analysis.

There are a number of parallel implementations of such tree algorithms, among
them shared [1] and distributed memory implementations [2,3] and references
therein. The latter follow a data parallel style with a distributed tree data struc-
tures which contains all geometric data. Operations on the tree are subdivided
into operations on a common coarse tree part including the tree root and into
distributed operations on finer sub-trees exclusively performed and stored on
a single processing element. Except for embarrassingly parallel communication-
less algorithms, there are algorithms which require top-down or bottom-up data
exchange, or some data geometrically close to the tree node. In many cases this
can be assembled into a single global communication step and arranged as local
tree traversal before or after the communication step. Subtle changes of the nu-
merical algorithm however may cause a more elaborate communication scheme
like a data exchange at each tree level or a dynamic process of request and serve
processes.

2 Dependence Analysis

A major part for automatic code parallelization is data dependence analysis [4,5].
Efficient distributed memory parallelization however requires global data depen-
dence analysis. There are partial solutions of this problem for loops and array
languages like in HPF, parallel libraries [6] and parallel skeletons [7], which
have been applied to divide-and-conquer operations [8]. For a detailed overview,
see [9].

As an example of a parallel domain language, we consider numerical codes
using data organized as one large tree. Algorithms doing so are fast summa-
tion techniques like the fast multipole method or some hierarchical grid solver
for partial differential equations. Such structures currently cannot be handled
automatically in high performance languages and compilers.

The computational atom of the tree algorithms to be discussed is a node data
structure. In C++ this is typically a class with some data members and member
functions. For tree traversal in the unbalanced tree there are methods to access
the child nodes. Furthermore, there may be functions to access nodes in the
geometric neighborhood, see Fig. 1. Numerical algorithms on the tree consist of
a specification of the (partial) tree traversal along with some operations on the
data members of each tree node visited. Of course, there are many different ways
to express this [10]. However, for parallelization and for dependence analysis it is
favorable to separate tree traversal from operations on the nodes. Even further, it

892 G. Zumbusch

is often possible to derive the type of tree traversal from the dependence analysis
of the operations and to omit the tree traversal code. Hence, tree algorithms can
be put into a generic tree library, while the user code specifies the operations
on a single tree node. Note that tree creation requires data partitioning and
thus requires further domain specific information. Often, some geometric data
decomposition can be used, which can also be put into the library.

�������	
����

�������	
	��������

�����
	��������

������	�

�	������
����

���	�������
����

Fig. 1. A sample tree node data structure (left) and the related binary tree (right) for
a fast multipole summation

We are left with the data dependence analysis of the operations on a single
tree node. A fine scale dependence analysis done by optimizing compilers is not
needed here, but solely the relation of data members of the current tree node
with other tree nodes. Currently we use a set of m4 scripts to create code, the
g++ compiler to process it, and a set of perl script to analyse the code’s output.
Based on a parallel tree library, this way a dependence analysis of the user code
can be performed. The result is a parallel distributed memory message-passing
code or a shared memory parallel pThread code or a hybrid message-passing/
pThread code for distributed memory systems with multiprocessor nodes.

A path matrix dependence analysis of the operations on a single tree node
is performed, see [5]. The read and write operations on all data members of a
node and on all nodes accessed relative to that node are recorded for different
stages of the algorithm. A standard bottom-up tree traversal for example will
read data of the node and its children and write data of the node, see Fig. 2.
Some top-down tree traversal may only write data of the node’s children. A
detailed comparison of data members read and written reveals flow dependencies
which cannot be parallelized this way. Hence, it is possible to verify that some
algorithm can be parallelized and to create the actual code for send and receive
of the necessary data members at some stage of a parallel tree traversal. Further,
the dependence pattern can be used to determine the type of tree traversal and
therefore the processor communication pattern. The same information is also
used for synchronization operations of a shared memory implementation.

Data dependence analysis on geometric neighbor nodes like in Fig. 2 (right)
can be done in the same way as for child/ parent dependencies. However, addi-
tional information is needed for the construction of the communication patterns.
Given additional user code annotation, for example based on a geometric inter-
pretation of the node relations, a transitive hull is set up, which contains at least

Data Dependence Analysis for the Parallelization of Numerical Tree Codes 893

�������	
����

�������	
	��������

�����
	��������

�������	
����

�����
	��������

�������	
����

�������	
	��������

�����
	��������

�������	
����

�������	
	��������

�������	
����

�������	
	��������

�����
	��������

�������	
����

�������	
	��������

�������	
����

�������	
	��������
�������	
����

�������	
	��������

�����
	��������

�������	
����

�������	
	��������

�����
	��������

Fig. 2. Sample data dependencies of tree operations: Read/write parent data, read
child data, bottom-up traversal (left). Read/write child data, read parent data, top-
down traversal (right). Read/write node data, read nodes of interaction list (bottom).

all neighbor nodes involved. We currently use a user defined relation, which may
or may not exclude complete sub-trees of interaction nodes. This relation is
marked by the code annotation REQUIRE, see also the end of the next section.

3 A Fast-Multipole-Method Example Code

As an illustrative example, we provide and discuss some parts of an imple-
mentation of a two-dimensional fast-multipole method. The detailed algorithm,
formulae and mathematical notation can be found for example in [11]. Here we
concentrate on some of the algorithmic structure and features that need to be
taken care of in the parallelization. The goal is to evaluate pair interaction forces
of a large number of particles. The idea is to approximate long distances com-
putations on coarser parts of a tree of particles, which is done in a bottom-up
summation and a top-down evaluation pass.

First of all, we declare a tree node derived from a generic k-ary tree defined
in the numerical tree library. Multipole and local expansion, particle and field
data are added. Further, numerical parts of the algorithm are encapsulated as
methods of the tree class.

class tree : public KAryTree<class tree,4> {
public:
complex<double> x, field;
TinyArray1<complex<double>, MAX_EXP_TERMS> mp_exp, local_exp;
...

};

The tree is created by successive insertion of particles. In order to separate
particles from one another, the respective tree node is subdivided. The dis-
tributed memory implementation also needs to distribute the tree data struc-
ture. A straightforward way to do this is to start with a coarse tree replicated on

894 G. Zumbusch

all processors. The complete sub-tree of the coarse tree leaf is mapped to exactly
one processor. Hence, the tree generation can be performed in parallel. In the
case additional load-balancing is necessary, for example space-filling curves can
be used [2,3].

tree *root = new tree;

The first part of the fast multipole summation method computes the far field
multipole expansions in a bottom-up order. Children node expansions are shifted
to the origin of the parent node expansion and summed up. The implementation
consists of some methods of the tree classes. We show the declaration only.
The comments indicate data dependencies for this presentation. Note that the
automatic dependence analysis is based on the actual implementation, not on
the comments.

void InitMPExp(); // store mp_exp
void ComputeMPExp(); // store mp_exp
void ShiftMPExp(tree *cb); // store mp_exp, load cb->mp_exp

The main code instantiates and uses a tree iterator and contains the actual
algorithmic atom to be executed for each tree node. This is a generic tree operator
and a first example of the proposed domain language.

BottomUpIterator<tree> iu(root);

ForEach(tree *b, iu, ‘
if (b->isleaf()) b->ComputeMPExp();
else {

b->InitMPExp();
for (int i=0; i<tree::dim; i++)
if (b->child[i])

b->ShiftMPExp(b->child[i]);
} ’)

The code transformation system converts this expression into an ordinary
tree traversal in the sequential case. The system is able to determine the type
of tree traversal and emits error messages in cases where an unsuitable iterator
is specified. However, the construction of a parallel iterator implies that the
operations on the children of a node are independent and can be executed in
parallel. Hence, for the thread parallel version, sub trees are assigned to different
threads, once the coarse tree provides enough sub trees to distribute the load
evenly. However, there is some data dependence, namely the child to parent
dependence in the array mp_exp. This translates into message passing at the
level of sub tree to coarse tree on distributed memory machines. The presented
code transformation system is able to detect this dependence, even as a inter-
procedure code analysis, and to emit the correct message passing instructions.

The second stage of the fast multipole summation computes the interaction
lists. For a balanced tree, the interactions are a set of siblings of a node. However,

Data Dependence Analysis for the Parallelization of Numerical Tree Codes 895

in the case of unbalanced trees, additional nodes on finer or coarser levels may be
needed for the interactions. Nevertheless, the interaction lists can be computed
in a top-down tree traversal.

TopDownIterator<tree> it(root);

For distributed memory machines, we replicate the operations on the already
replicated coarse tree, such that no communication or message passing is actually
needed in this step.

The final stage of the algorithm, which can also be executed in conjunction
with the second stage, computes the local expansions and finally the fields. Here,
the far field multipole expansions are evaluated directly or converted into near
field local expansions, which need to be evaluated. This can be performed in a
top-down tree traversal with a set of methods in the tree class,

void VListInter(tree *src); // store local_exp, load src->mp_exp
void UListInter(tree *src); // store field, load src->x
void WListInter(tree *src); // store field, load src->mp_exp
void XListInter(tree *src); // store local_exp, load src->x
void ShiftLocalExp(tree *cb); // store cb->local_exp, load local_exp

which perform the four types of possible conversions and shift the local expan-
sions for propagation to the children nodes.

ForEach(tree *b, it, ‘
for (int i=0; i<tree::dim; i++)

if (b->child[i]) {
b->ShiftLocalExp(b->child[i]);
b->child[i]->field = 0.0;
if (b->child[i]->isleaf())

for (list<tree*>::iterator n = b->child[i]->inter.begin();
n != b->child[i]->inter.end(); n++) {

if ((*n)->isleaf()) b->child[i]->UListInter(*n);
else b->child[i]->WListInter(*n);

}
else

for (list<tree*>::iterator n = b->child[i]->inter.begin();
n != b->child[i]->inter.end(); n++) {

if ((*n)->isleaf()) b->child[i]->XListInter(*n);
else b->child[i]->VListInter(*n);

}
b->child[i]->EvaluateLocalExp();

} ’)

Both sequential and thread parallel versions are relatively easy to generate,
since there is only a parent to child data dependence in the local_exp arrays.
However, in the distributed memory version of this code, the dependence on sib-
ling nodes mp_exp arrays and particle data x turns out to be a severe problem.
While it is easy to detect this as a possible dependence, only a global analysis

896 G. Zumbusch

of the tree and interaction list construction may lead to an efficient and correct
result. Some message passing is needed for correctness, but too much may ex-
haust local memory and degrade parallel efficiency. At this point we clearly see
the limitations of automatic parallelization.

The solution we chose here is an additional hint (code annotation) in the
application program. The hint provides a criterion to select a set of nodes, which
are needed at most. The transformed code initiates a message passing step to
exchange the variables determined by the dependence analysis. Data of a node
is sent to another processor, if and only if the given criterion may match for any
of this processors nodes. Hence, the criterion has to be transitive such that it is
fulfilled for a pair of nodes, if it is fulfilled for one of its children and the other
node.

REQUIRE(list<tree*> neighbor, fetch);
REQUIRE(list<tree*> inter, fetch);
int fetch(tree *b) { return (distance(b) <= 2 * fmin(diam, b->diam)); }

Some more details of the code are presented in the following section.

4 Numerical Experiments

For illustration purposes of the concept of generative programming and auto-
matic parallelization of codes written in a domain language we have to implement
several systems: First of all, a data dependence analysis tool and a code gen-
eration system have to be created. In order to demonstrate its use a domain
language and a parallel application library has to be written. Finally a sample
application code has to be developed, which is written in the domain language
and which is compiled by the code generation system.

The main part of data dependence analysis currently is implemented in a non-
robust way leading to a speculative parallelization. The tree atoms of code are
compiled and instantiated in different settings. A runtime system keeps track
of all references to variables, which results in a dependence analysis capable
of interprocedure analysis and recursive calls. However, this requires some pro-
gramming discipline and the possibility of missing some data dependence. An
alternative approach to be pursued in the future would substitute this step by a
static code analysis within the optimization phase of a standard C++ compiler.
The code generation system further includes multiple passes of the code by the
macro preprocessor m4 to generate code, g++ to either compile the code or
look for errors and some perl scripts to extract information from the compiler
error messages or code instantiations. The results of the compilation process is a
correct sequential or parallel code. Each parallel programming model of message
passing, thread parallelism or mixed model leads to a different parallel code. The
overall execution time of the code generation process is of the same order as stan-
dard compilation times of optimizing compilers and are substantially lower than
compilation times of some cases of expression templates or self-tuning libraries,
see Table 1.

Data Dependence Analysis for the Parallelization of Numerical Tree Codes 897

Table 1. Execution times of the source-to-source transformation and compilation
times, FMM example, wall clock in sec. Total times are measured and do not ex-
actly match the sum of sub tasks mainly due to pipelining effects of the compilation
stages

sequential pThreads MPI pThreads & MPI

find out of scope variables 9.0
find local scope variables 1.7
create instrumented code − 4.3

create src code 0.45 0.78 0.75 0.83
compile src, no flags / -O3 2.3/3.2 2.4/3.8 4.8/7.4 5.0/7.4

total, no flags / -O3 11.5/12.6 17.7/20.1 20.2/23.8 21.3/22.9

532 lines of code expand to 590 680 729 777

Now we are ready for the second implementation, namely a numerical tree
algorithm to be parallelized and compiled by the code generation system. Again
for illustration purposes we chose a well documented example. The fast multipole
method in two spatial dimensions can be written for a logr potential conveniently
with complex numbers and arithmetic [11] using a Laurent- and a power-series.
We chose the fast multipole code of the SPLASH-2 program collection [12] as
an initial point. The number of coefficients is fixed both for the far field Laurent
series and the near field power series. A quad-tree is constructed with at most
one particle per node, each representing a square shaped cell. The particles
are distributed uniform over the unit square [0, 1]2 which leads to a slightly
unbalanced tree, but good load balance for processor numbers of powers of two.

Wall clock times of a single fast multipole summation, including the computa-
tion of far field, near field and the interaction lists are reported on two computer
platforms. First, we consider a shared memory computer with four dual-core
AMD Opteron processors at 1.8GHz with 64bit Scientific Linux totaling eight
processors. In Table 2 we report execution times for two different problem sizes
for the sequential, the thread parallel (pThreads), the message-passing (MPI)
and the mixed parallel code. Second, the same codes are compiled and run on
a beowulf cluster of 32 PCs with a dual-core Intel D820 processor at 2.8GHz
running 64bit Rocks Linux connected by gigabit ethernet totaling 64 processors.
Three different problems sizes and four programming models are run, see Ta-
ble 3. The all MPI version places two MPI processes on a computer, while the
mixed programming model uses one MPI job, which initiates a second worker
thread. On both platforms we use the Mpich MPI implementation with shared
memory communication on a computer and p4 device over the network.

On both platforms and for all parallel programming models we observe good
parallel speedup and efficiency. Further, four-times the number of particles, lead-
ing roughly to four-times the amount of work, also gives good parallel scaling.
The most efficient parallel programming model on the shared memory machine is
message-passing. The thread implementation is slightly slower. The paralleliza-
tion is efficient up to eight processors, especially for the larger problem size.

898 G. Zumbusch

Table 2. Execution times of the FMM example, wall clock in sec. SMP server with 4
dual core processors

no. of proc. cores 1 2 4 8

0.36 · 106particles, MPI 21.56 10.80 6.47 3.73
2 threads per MPI node 11.60 6.93 3.73
4 threads per MPI node 7.13 4.34
8 threads per MPI node 4.19

1.44 · 106particles, MPI 84.15 42.11 21.56 11.29
2 threads per MPI node 43.84 24.24 11.68
4 threads per MPI node 25.26 12.73
8 threads per MPI node 13.68

Table 3. Execution times of the FMM example, wall clock in sec. Beowulf cluster
with dual core nodes and gigabit ethernet

no. of proc. cores 1 2 4 8 16 32 64

0.36 · 106particles, MPI 28.42 14.81 7.14 3.45 2.14 2.00 2.73
2 threads per MPI node 15.84 7.64 3.76 2.01 1.30 1.22

1.44 · 106particles, MPI 15.03 10.17 7.21 5.47
2 threads per MPI node 7.53 3.90 2.70

5.76 · 106particles, MPI 15.6 8.26
2 threads per MPI node 8.24

For reasons of main memory size, the larger problems can be run on the clus-
ter only for a certain number of computers and above. Up to eight processors,
message passing is most efficient. On larger processor numbers the mixed pro-
gramming model is faster, probably due a limitation of network speed (gigabit
ethernet) and a fewer number of communication operations of each computer.
Versions up to four processors are executed faster on the AMD processors, but
the cluster is faster for eight processors (and more).

Hence all parallel programming models are efficient in general. The optimal
choice depends on the platform and number of processors. Execution larger num-
bers of fast multipole summations, the compilation times (reported from a slower
computer) can be neglected.

5 Conclusion

We have discussed some aspects of the automatic parallelization of tree codes.
With fast multipole and related algorithms in mind, a programming style with
a domain specific tree traversal library and some user code which defines data
structures and operations on the tree nodes is briefly introduced. This style
allows for a data dependence analysis of the tree algorithms and an efficient

Data Dependence Analysis for the Parallelization of Numerical Tree Codes 899

parallelization, in the sense of telescoping programming languages. Code anno-
tation was used, when static dependence analysis was no longer sufficient. The
library and preprocessor have been used so far among others for the paralleliza-
tion of a fast multipole method.

We would like to thank the anonymous referees for their helpful comments.

References

1. Singh, J.P., Holt, C., Gupta, A., Hennessy, J.L.: A parallel adaptive fast multipole
method. In: Proc. 1993 ACM/IEEE conf. Supercomputing, pp. 54–65. ACM, New
York (1993)

2. Salmon, J.K., Warren, M.S., Winckelmans, G.S.: Fast parallel tree codes for grav-
itational and fluid dynamical N-body problems. Int. J. Supercomp. Appl. 8(2),
129–142 (1994)

3. Caglar, A., Griebel, M., Schweitzer, M.A., Zumbusch, G.: Dynamic load-balancing
of hierarchical tree algorithms on a cluster of multiprocessor PCs and on the Cray
T3E. In: Meuer, H.W. (ed.) Proc. 14th Supercomp. Conf., Mannheim, Mateo (1999)

4. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach. Morgan Kaufmann, San Francisco (2002)

5. Hummel, J., Hendren, L.J., Nicolau, A.: A framework for data dependence testing
in the presence of pointers. In: Proc. 23rd annual int. conf. parallel processing, pp.
216–224 (1994)

6. Oldham, J.D.: POOMA. A C++ Toolkit for High-Performance Parallel Scientific
Computing. CodeSourcery (2002)

7. Kuchen, H.: Optimizing sequences of skeleton calls. In: Lengauer, C., Batory,
D., Consel, C., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS,
vol. 3016, pp. 254–273. Springer, Heidelberg (2004)

8. Herrmann, C., Lengauer, C.: HDC: A higher-order language for divide-and-
conquer. Parallel Proc. Let. 10(2/3), 239–250 (2000)

9. Lengauer, C.: Program optimization in the domain of high-performance parallelism.
In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Pro-
gram Generation. LNCS, vol. 3016, pp. 73–91. Springer, Heidelberg (2004)

10. Ananiev, A.: Algorithm alley: A generic iterator for tree traversal. Dr. Dobb’s
J. 25(11), 149–154 (2000)

11. Beatson, R., Greengard, L.: A short course on fast multipole methods. In:
Ainsworth, M., Levesley, J., Light, W., Marletta, M. (eds.) Wavelets, Multilevel
Methods and Elliptic PDEs. Numerical Mathematics and Scientific Computation,
pp. 1–37. Oxford University Press, Oxford (1997)

12. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 programs:
Characterization and methodological considerations. In: Proc. 22nd annual int.
symp. computer architecture, pp. 24–36. ACM, New York (1995)

	Data Dependence Analysis for the Parallelization of Numerical Tree Codes
	Introduction
	Dependence Analysis
	A Fast-Multipole-Method Example Code
	Numerical Experiments
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

