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Abstract. High performance computers offer lots of parallelism at dif-
ferent levels of vectorization, thread parallelism, message-passing be-
tween distributed memory architectures and even function off-loading
by hardware accelerators. Large scale numerical simulations often have
lots of parallelism, which may be difficult to express in a high level pro-
gramming language. A common abstract parallel programming style is
proposed, which can be translated automatically into parallel code for
one or a combination of common programming styles for different parallel
architectures.

1 Introduction

There is a long history of parallel programming in the area of high performance
computing. However, now even low end computing platforms are all parallel,
based on multi-core processors, multimedia vector instructions and numerical
co-processors. Standard techniques to express parallelism in a high level pro-
gramming languages include message-passing library calls, such as MPI for dis-
tributed memory platforms. Shared memory platforms can be programmed addi-
tionally with a thread library such as Posix threads and alternatively with higher
level constructs for loop paralelism like in OpenMP or parallel objects [1].This
is applicable to symmetric multi-processing, multi-core processors and to some
extend also to non-uniform mamemory access architecture. On the lower end of
parallelism, compilers take care of an even finer scale of instruction parallelism
for super-scalar and pipelined instruction units. However, this is not completely
true for vectorization with multimedia SIMD instructions of different flavors [2].

Large numerical simulation codes have a longer life-time than that of several
parallel platforms combined. It is of vital importance to have a portable code,
which runs efficiently on many of the available or future parallel platforms. There
are several projects to improve parallel programming for high performance com-
puting which target multiple parallel platforms. These include high level general
purpose languages like UPC and X10.There are different data-parallel Fortran
extensions. Projects with slightly more narrow focus are Pooma [3], pC++ [1],
or Rose [4]. Current GPU hardware is addressed by Brook [5], RapidMind [6],
Hmpp and others, while the Cell processor is supported by CellSs [7], Sequoia [8],
and again RapidMind. The projects are based on restrictions to certain types



of applications and algorithms like data streams, array data structures, index
based array access in loops over index sets or operations on whole or slices of
arrays.

We introduce a code generation system for source-to-source translation to dif-
ferent parallel programming paradigm such as multi-threading, message-passing,
vectorization, GPU function off-loading, Cell processor and combinations thereof.
The user code in standard C++ annotates data parallel iterators over data con-
tainers (visitor pattern). The implementation of the container classes depends
on the parallel target architecture. The annotated user code is analyzed by a cus-
tom version of the front and middle end of a modified version of the Gnu g++
compiler. The analysis, together with the user code is then translated into a par-
allel C++ code, which can be compiled by the native host compiler . This way,
the necessary send and receive operations, user initiated DMA data transfers,
replication of global references and global reduction operations can be created.

2 Parallel Programming Paradigms

First of all, we will discuss some of the parallel programming paradigms. The goal
is to illustrate the programming style before we introduce the source-to-source
compiler in section 3. We consider the following example of a one-dimensional
array and a loop over an index set. Note that iterator programming model pre-
sented is applied to more general containers like tree data structures and is not
restricted to increment one loops.

There is an assignment (store x) with non-local array access (load y) and a
global reduction (reduce add s) with local array access (load y). If n is large
enough, it does make sense to distribute both loops to a number of processors.

In multi-threading, the index set is partitioned and mapped to different
threads. A distributed memory message passing parallelisation additionally dis-
tributes the vectors. The non-local array access causes local neighbor comm-
munication operations prior to the computation. The reduction leads to a (tree
based) all-to-all communication. A SIMD parallel version using multimedia in-
structions with 128 bit words can perform 4 operations per instruction. Hence,
the loop advances by an increment of 4. with a trailing reduction operation.

The Cell implementation runs the sequential code on the PPU. Once the
loop is reached, SPU loop code is loaded onto the SPUs. Each SPU performs
a fraction of the operations like in the multi-threading case. However, the SPU
code divides data further into blocks that fit into local memory. In order to
overlap computation and data transfer, a multi-buffer strategy is employed. A
load operation for future data block, a loop over the current data block, and a
store operation on past data block are executed in parallel.

Table 1. Non-local memory access and reduction example.

for(int i=1;i<n;++i) { x[i]=.5*(y[i+1]+y[i-1]); s += sqr(y[i]);}



Table 2. Parallel loop syntax.

Grid1IteratorSub it(...);

ForEach(int i, it, ‘x(i) = .5* (y(i+1) + y(i-1)); s += sqr(y(i));’)

Table 3. Automatic code analysis.

block 1 load ‘y’ ‘DistArray1<float>’ [#-1,#+1]

store ‘x’ ‘DistArray1<float>’ [#,#]

reduce add ‘s’ ‘float’

3 The Parallel Code Generation

The basic assumption in our approach is that the user is able to mark parallel
sections as parallel in the sense of data-parallel with possible local neighbor
communication and possible reduction operations. A compiler may fail to identify
such sections itself, because global code dependence analysis may be necessary
to do so. Note that data layout and data distribution is also of vital importance.
From a user perspective, good application specific data storage schemes may be
available, which are again not known to a general compiler. Hence, we opt to
put these into a run-time library.

In a previous effort to implement a similar project [9] for message-passing and
multi-threading, a dynamic, speculative dependence analysis was performed. The
current compilation system is based on an extension of the Gnu g++ 4.2 compiler
and operates on the tree static single assignment (tree SSA) representation of the
code. For each ForEach block, a table of variables loaded and stored is created.
In the case of distributed objects, the precise relative element accessed is also
included. This way it is possible to determine local access (i) and non local
access. The data dependence analysis is also capable of tracing pointer accesses
inside linked data structures like trees, e.g. see table 3.

There is a single data dependence analysis, but multiple code generators. We
consider different target codes like multi-threading, message-passing, vectoriza-
tion, procedure off-loading onto a graphics card (GPU) and a specialized Cell
function off-loading model.The generated parallel code is linked to a platform
dependent auxiliary runtime library.

4 Experimental Evaluation

We have chosen a single benchmark code for the evaluation of the compiler anal-
ysis, code generation system and the different programming models. A multigrid
equation solver similar to a code of NAS parallel benchmark [10] is written with
different sized arrays and ForEach loops. The code uses a nested set of three-
dimensional arrays and grids. An iterative method for the solution of an equation
system created by a constant finite difference stencil computes a solution. All
functions are stored as arrays. The multigrid method improves the convergence
rate of the iterative method by additional calculations on auxiliary coarser grids.

In figure 1 results are shown for a PC cluster of dual-core nodes, a Sony
Playstation 3 with Cell processor and a couple of Nvidia graphics cards. We
observe a good parallel scaling in proceesor cores, GPU engines and Cell SPUs.
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Fig. 1. Experiments for message-passing and threading, Cell processor SPU co-
processors and SIMD instructions, and GPU computing.
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