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Abstract. Several highly optimized implementations of Finite Differ-
ence schemes are discussed. The combination of vectorization and an in-
terleaved data layout, spatial and temporal loop tiling algorithms, loop
unrolling, and parameter tuning lead to efficient computational kernels in
one to three spatial dimensions, truncation errors of order two to twelve,
and isotropic and compact anisotropic stencils. The kernels are imple-
mented on and tuned for several processor architectures like recent Intel
Sandy Bridge, Ivy Bridge and AMD Bulldozer CPU cores, all with AVX
vector instructions as well as Nvidia Kepler and Fermi and AMD South-
ern and Northern Islands GPU architectures, as well as some older archi-
tectures for comparison. The kernels are either based on a cache aware
spatial loop or on time-slicing to compute several time steps at once.
Furthermore, vector components can either be independent, grouped in
short vectors of SSE, AVX or GPU warp size or in larger virtual vectors
with explicit synchronization. The optimal choice of the algorithm and
its parameters depend both on the Finite Difference stencil and on the
processor architecture.

1 Introduction

Finite Differences are a classical numerical scheme for the solution of differential
equations. However, the stencils on structured grids are also computationally
efficient on current computers, which explains their widespread use in science.

By the introduction of a new vector instruction set for x86 architecture CPUs,
vector length increases from 128 bit SSE to 256 bit AVX vectors, i.e. from 4 to 8
single precision numbers (float), with a road map to even larger vectors. Other
CPUs provide long vectors already (Intel Phi 512 bit, 16 floats). In GPU com-
puting, vector lengths of 16 to 64 floats are common, which can be combined to
virtual vectors of length 256 to 1024 by hardware multi-threading. Automatic
vectorization of loop and array expressions in Fortran style codes has been devel-
oped successfully for classic style vector computers. However, current architec-
ture’s memory, caches or GPU local processor memories do not provide enough
bandwidth anymore. Algorithmic modifications are needed to reduce memory
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traffic, streamline memory access and to feed the vector units by data placed
in registers and memory closer to the processor. Further issues are to provide
enough instruction parallelism for long pipelines and multi-threading.

We make the following contributions: We propose interleaved data layouts of
the Finite Difference grid points especially suited for vector instructions based on
memory aligned vector load and store operations. We develop highly tuned im-
plementations of Finite Difference stencil computations for single CPU cores with
SSE and AVX vector instructions on older and most recent CPU architectures
by Intel and AMD. Furthermore, OpenCL and Nvidia Cuda implementations for
AMD and Nvidia GPUs are presented, again organizing Finite Difference stencil
computations as vector operations and adapting the data layout accordingly. By
an analysis of simple Finite Difference stencils, we obtain efficient implementa-
tion techniques and upper performance limits also applicable to more complex
numerical expressions.

2 Model Problem Finite Difference Stencils

We consider Finite Difference stencil computations on structured grids. The sten-
cils represent discretized versions of constant coefficient second order differential
operators. Both application of the operator within a linear equation solver or
within a time stepping scheme are included. Furthermore, an iterative solver of
Jacobi type can be implemented this way. We consider arbitrary approximation
orders, spatial dimensions of the structured grid, and isotropic and anisotropic
self adjoint operators. Isotropic stencils of order p in one to three dimensions
with constant coefficients cl can be written as

unew
i = c0ui +

p/2∑

l=1

cl(ui−l + ui+l)

unew
i,j = c0ui,j +

p/2∑

l=1

cl(ui−l,j + ui+l,j + ui,j−l + ui,j+l)

unew
i,j,k = c0ui,j,k +

p/2∑

l=1

cl(ui−l,j,k + ui+l,j,k + ui,j−l,k + ui,j+l,k + ui,j,k−l + ui,j,k+l)

and may approximate the isotropic ∆ Laplace operator applied to the grid func-
tion u. Anisotropic operators represent linearly distorted versions of the operator,
like the two dimensional version:

unew
i,j = c0,0ui,j +

∑p/2
l=1 (cl,0(ui−l,j + ui+l,j) + c0,l(ui,j−l + ui,j+l))

+
∑p/2

l=1 cl,l(ui−l,j−l + ui+l,j+l − ui+l,j−l − ui−l,j+l)

+
∑p/2

l

∑p/2
m=l+1 cl,m(ui−l,j−m + ui−m,j−l + ui+l,j+m + ui+m,j+l

−ui+l,j−m − ui+m,j−l − ui−l,j+m − ui−m,j+l)

The three dimensional anisotropic stencil of the Laplace operator approximation
is a collection of two dimensional stencils along each xi, xj coordinate area. The
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shape of the three dimensional isotropic and anisotropic stencils are depicted in
Fig. 1.

Fig. 1. Schematic 3D 4th order FD stencil, isotropic and anisotropic. Single stencils
(left) and 3× 3× 2 block (right).

The number of grid points and arithmetic operations, separated into adds
and subs, multiplications (mul) and alternatively fused multiply-adds (fma) are
summarized in Tab. 1. The number of fma operations equals the number of grid
points, which increases with order and dimension. The number of multiplications
equals the number of coefficients and is at most the number of adds.

Table 1. Finite Difference stencils of order p, number of floating point operations per
grid point.

name operator load points total flops add mul fma

1D Dxx 1 + p 1 + 3
2p p 1 + 1

2p 1 + p
2D Dxx + Dyy 1 + 2p 1 + 5

2p 2p 1 + 1
2p 1 + 2p

3D Dxx + Dyy + Dzz 1 + 3p 1 + 7
2p 3p 1 + 1

2p 1 + 3p
anisotropic
2D a11Dxx + 2a12Dxy + a22Dyy (1 + p)2 1 + 13

4 p + 9
8 p

2 2p + p2 1 + 5
4p + 1

8p
2 (1 + p)2

3D a11Dxx + 2a12Dxy + 2a13Dxz 1 + 3p + 3p2 1 + 21
4 p + 27

8 p2 3p + 3p2 1 + 9
4p + 3

8p
2 1 + 3p + 3p2

+a22Dyy + 2a23Dyz + a33Dzz

3 Target Processor Architectures

We will implement several Finite Difference algorithms for CPU and GPU (graph-
ics processing unit) architectures. We consider single processor cores of x86 CPUs
by Intel and AMD and GPUs by Nvidia and AMD, see Tab. 2 and 3. We consider
the smallest independent processor unit (core), called ‘streaming multiproces-
sor’ by Nvidia, ‘shader cluster’ on AMD GPUs or ‘module’ for AMD Bulldozer.
Most recent CPUs feature AVX arithmetic vector instructions, that is 256 bit
vectors with 8 single precision (float) or 4-double precision values. Add and mul
operations take two vectors to compute a result vector, fma takes three input
vectors. Previous CPUs offered SSE vectors of half the size. The CPUs have
independent floating point add and mul pipelines, with the exception of AMD
Bulldozer. Hence the number of adds are an upper performance limit for the Fi-
nite Difference implementations, given that data flow between registers, caches
and memory is fast enough.

PARA2012, 014, v2 (final): ’Vectorized High...’ 3



Table 2. CPU and GPU processors, micro architectures and their single precision
(32 bit float) performance. All numbers of a single processor core.

processor performance cache
clock vector vector flop/s L1 L2 shared

architecture name instructions op/cycle LL
[GHz] [GF] [kB] [kB] [MB]

Intel Ivy Bridge i5-3450 3.1/3.5 AVX add + mul 56 32 256 6
Intel Sandy Bridge i7-2600 3.4/3.8 AVX add + mul 60.8 32 256 6
Intel Core Xeon E5405 2.0 SSE4.1 add + mul 16 32 – 6
AMD Bulldozer FX-8150 3.4/3.9/4.2 AVX, FMA4 fma 67.2 16 2048 8
AMD K10 Opteron 6168 1.9 SSE4 add + mul 15.2 64 512 6
AMD K8 Opteron 865 1.8 SSE3 1/2(add + mul) 7.2 64 – 1
Nvidia Kepler GK110, Tesla K20c 0.705/0.758 32 6 fma 291.1 16 − 48 – 1/8
Nvidia Kepler GK104, GTX 680 1.006/1.059 32 6 fma 406.5 16 − 48 – 1/8
Nvidia Fermi GF108, GT 540M 1.344 32 3/2 fma 129 16 or 48 – 1/8
Nvidia Fermi GF110, GTX 590 1.215 32 1 fma 77.8 16 or 48 – 1/8
Nvidia Fermi GF100, Tesla C2050 1.15 32 1 fma 73.6 16 or 48 – 1/8
Nvidia GT200 GTX 260 1.296 32 1/4 fma 20.7 – – –
AMD South. Isl. GCN, HD 7970 0.925 64 1 fma 118.4 16 – 1/8
AMD North. Isl. VLIW4, HD 6990 0.83 64 1 fma 106.3 8

GPU architectures are based on vectors of length 32 or 64 floats within a
processor. Hardware multi-threading enables the program to combine the vectors
transparently to larger virtual vectors of sizes 256 to 1024. The GPUs have fma
floating point pipelines. Hence the number of fmas serve as an upper performance
limit, like in the case of Bulldozer CPUs. We have listed the properties of a
single CPU core and a single GPU processor, although usually chips and systems
with different numbers of cores are available. Note that the double precision
performance of the CPUs is half of the single precision in Tab. 2 and the GPU
double precision performance is between 1/24 and one half of single precision.

Table 3. Double precision peak performance of a single GPU core.

processor performance
architecture name clock cores vector vector flop/s

[GHz] length fma/cycle [GF]
Nvidia Kepler GK110, Tesla K20c 0.705/0.758 13 32 2 97.0
Nvidia Kepler GK104, GTX 680 1.006/1.059 8 32 1/4 16.9
Nvidia Fermi GF108, GTX 540M 1.344 2 32 1/8 10.8
Nvidia Fermi GF110, GTX 590 1.215 16 32 1/8 9.7
Nvidia Fermi GF100, Tesla C2050 1.15 14 32 1/2 36.8
AMD South. Isl. GCN, HD 7970 0.925 32 64 1/4 29.6
AMD North. Isl. VLIW4, HD 6990 0.83 24 64 1/4 26.6

4 Scalar Cache Aware Algorithms and Data Layout

First of all we will discuss scalar versions of the Finite Difference algorithms
before we turn them into the vectorized algorithms necessary to fully exploit the
target processors. For reasons of simplicity, we ignore boundary conditions close
to the border of the spatial grid and start-up procedures for algorithms with
multiple time steps.

Naive implementations of a Finite Difference stencil will simply take a loop
over all grid points and apply the stencil. Such an algorithm has to load the same
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number of values from memory as number of fma operations are performed. This
is a memory bandwidth bound algorithm in a range of about 1 GF. It is up to
a good cache mechanism to make this efficient. However, even the bandwidth of
the L1 cache does not match the demand of the floating point pipelines.

4.1 Sliding Window Algorithm

The memory hierarchy of main memory RAM, last level (LL) to first level (L1)
caches and processor registers offers different memory capacity at vast differences
of access bandwidth and latency. Only the bandwidth of the register file is able
to fully match the processor floating point pipelines. An improvement of the
naive Finite Difference implementation goes like this: Data re-use is explicitly
organized in register space. A cache aware 1D space loop for p + 1-point wide
Finite Difference stencil (order p in Tab. 1) implementing a single time step may
look like this:

r[0..p-1] = grid[0..p-1]; // load memory
for (int x=0; x<stepx*(p+1); x=x+p+1) {

for (int x0=0; x0<p+1; x0++) { // unroll loop
r[(x0+p)%(p+1)] = grid[x+x0+p]; // load memory
grid[x+x0] = calc (r[(x0)%(p+1)..(x0+p)%(p+1)]); // store memory

}
}

Values r and c are to be placed in registers, routine calc represents the
inlined stencil and grid values u. For reasons of simplicity a single array u is
used both input and output, over writing old values of u with new ones. The
x0 loop needs to be explicitly unrolled, at least for most of the compilers, such
that index expressions for r can be removed. The code for example for a 3-point
stencil (order p = 2) can be expanded to

r0 = grid[0]; r1 = grid[1]; // load memory
for (int x=0; x<stepx*3; x=x+3) {

r2 = grid[x+2]; // load memory
grid[x ] = calc (r0, r1, r2); // store memory
r0 = grid[x+3]; // load memory
grid[x+1] = calc (r1, r2, r0); // store memory
r1 = grid[x+4]; // load memory
grid[x+2] = calc (r2, r0, r1); // store memory

}

by a source-to-source preprocessor. This way copying of registers can be avoided.
Data re-use takes place via registers only. There is one memory load and one
store per grid point, compared to e.g. 1 + p fma operations.

The sliding window algorithm is discussed by [1–8] (often in the GPU context)
and can be generalized to higher dimensions based on the memory hierarchy: The
inner most loop data re-use through the register file can be complemented by
L1 and L2 caches for the surrounding loops. In this case 1+ d · p fma operations
have to be compared to one main memory load and one store per grid point and
additional cache loads.
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Table 4. Scalar sliding window algorithm for order p Finite Difference stencils. All
memory loads expect for one can be cached.

name register storage load store fma
1D 1 + p 1 1 1 + p
2D isotropic 1 + 2p 1 + p 1 1 + 2p
3D isotropic 1 + 3p 1 + 2p 1 1 + 3p
2D anisotropic (1 + p)2 1 + p 1 (1 + p)2

3D anisotropic 1 + 21
4 p + 27

8 p2 (1 + p)2 1 1 + 21
4 p + 27

8 p2

4.2 Time Slicing Algorithm

In case the ratio of arithmetic operations to memory operations is still too small,
several time steps can be aggregated into the time slicing (or time skewing,
temporal tiling) algorithm, see [9–12] and for more recent work [1, 5, 13–15].
Initially developed to perform most of the computations in cache rather than
main memory, time slicing with wide slices does most of the computations in
register with memory operations mainly to cache. A one dimensional version of
time slicing with p+ 1 point stencils looks like this:

for (int x=(stepx-1)*s; x>=0; x=x-s) {
r[0..s-1] = grid[x..x+s-1]; // load memory
for (int t=0; t<stept*p; t=t+p) {

r[s..s+p-1] = grid[x+t+s..x+t+s+p-1]; // load cache
r[0..s-1] = calc (r[0..s+p-1]); // unroll
grid[x+t+p..x+t+2*p-1] = r[0..p-1]; // store cache

}
grid[x+(stept+1)*p..x+stept*p+s-1] = r[p..s-1];// store memory

}

A spatial tile of size s is used to compute stept time steps at once. Additional
input data for the inlined Finite Difference stencils calc is loaded from a section
of grid, which is presumably in cache. This algorithm uses grid as input and
output for u and as cached intermediate storage of the stencil halo zones. To
make sure that r is mapped to registers and the number of s difference stencils are
in fact unrolled, some compilers require explicit source code unrolling. Note that
this implementation requires the tile size to be large enough s ≥ p. Furthermore,
an initialization of the time slices next to the border is needed, which is ignored
here, see [8] for a 1D version with separate auxiliary storage.

In two dimensions the loop and storage structure is the similar. The grid
pattern to compute a rectangle of sx×sy points is a rectangle of (sx+p)×(sy+p)
points for the anisotropic stencils. The points to be loaded and stored in each
time step are an old rectangle minus a new one, forming L-shaped domains. If
we assume that data re-use of the innermost x-loop fits into L1 cache and the
y-loop into L2 cache, one leg of the L-domain is mapped to L2 cache and the
remaining rectangle to L1 cache. Some snapshots of a two dimensional scheme
are depicted in Fig. 2.

for (int y=(stepy-1)*sy; y>=0; y=y-sy) {
for (int x=(stepx-1)*sx; x>=0; x=x-sx) {

load rectangle [0..sy-1]*[0..sx-1] at grid[y][x] from memory
for (int t=0; t<stept*p; t=t+p) {
load L-domain [0..sy+p-1]*[0..sx+p-1] minus [0..sy-1]*[0..sx-1]

at grid[y+t][x+t] from caches
calc rectangle [0..sy-1]*[0..sx-1]
store L-domain [0..sy-1]*[0..sx-1] minus [p..sy-1]*[p..sx-1]

at grid[y+t+p][x+t+p] to caches
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Fig. 2. Snapshots of the 2D time slicing algorithm, left to right, initial rectangle and
later L-shaped pattern loads and the consecutive stores. The grid points are organized
in the y-x plane. The time level is color-coded, values are shifted in x- and y-direction
proportional to t. Initial values on the left (blue), results on the right (red).

}
store rectangle [0..sy-p-1]*[p..sx-p-1]

at grid[y+stept*p][x+stept*p] to memory
}

}

The storage patterns of the isotropic stencils are rectangles minus rectan-
gles p/2× p/2 at the four corners. In three dimensions cubes and differences of
cubes are mapped to three levels of cache. The memory access pattern change
accordingly.

The computation to memory operation ratio is comparable to the sliding
window algorithm, with the advantage to substitute main memory access by
cache access, at least for large numbers of time steps.

Table 5. Scalar time slice algorithm for order p Finite Difference stencils with tile size
s ≥ p. All memory loads and stores can be cached.

name register storage load / store
1D s + p p / p
2D isotropic (sx + p)(sy + p) − p2 (sx + p)(sy + p) − sxsy − 3

4p
2

sxsy − (sx − p)(sy − p) − 1
4p

2

3D isotropic (sx + p)(sy + p)(sz + p) − p3 (sx + p)(sy + p)(sz + p) − sxsysz − 7
8p

3

sxsysz − (sx − p)(sy − p)(sz − p) − 1
8p

3

2D anisotropic (sx + p)(sy + p) (sx + p)(sy + p) − sxsy
sxsy − (sx − p)(sy − p)

3D anisotropic ≤ (sx + p)(sy + p)(sz + p) (sx + p)(sy + p)(sz + p) − sxsysz
sxsysz − (sx − p)(sy − p)(sz − p)

5 Vectorization and Data Layout

All processor architectures under consideration are (parallel) vector processors.
For reasons of performance, vector operations have to be used rather than scalar
operations. A naive approach would be to block the innermost loop in the size
of the vector length, exploit instruction level parallelism and use vector load
operations not aligned to the length of a vector. However, unaligned memory
access can imply more memory access if it crosses cache lines. Further, data
re-use in registers is inhibited by this procedure.

An alternative approach would be to emulate unaligned memory access by
loading consecutive aligned vectors and additional vector shift operations. This
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is again expensive, partly because arbitrary vector shift instructions are not
available. We will come back to this topic in the next subsections.

5.1 Vectors of Independent Tasks

One strategy to fully exploit the potential of vector instructions to consider them
as SIMD parallel, independent tasks. Hence each vector component represents
one grid, e.g. one octant of the full domain for vector length 8. Since a single
step of the Finite Differences is fully parallel, a coupling just appears through
the boundary conditions, which is cheap to implement.

The vector load and store operations have to be aligned for performance
reasons. Hence the independent sub-grids have to be interleaved in memory
accordingly. The scalar algorithm is simply vectorized by substitution of the
scalar data type by the vector type and additional boundary procedures.

5.2 Shifted Vectors on CPUs

No changes in memory layout and a more efficient use of vector registers would
be the introduction of vector shift instructions like

vec shift (vec a, vec b, int i) { // vector length n, 0<=i<=n
return [a[i..n-1] b[0..i-1]];

}

A CPU of Ivy Bridge type for example is able to issue one floating point
vector add, one mul and one permute operation per cycle in addition to integer
and memory instructions. Unfortunately, the permute instructions have limited
capabilities only:

The SSE instruction set offers the two vector argument instruction _mm_shuffle,
which is sufficient for double precision, but in single precision can only be used for
groups of two float2 values. The AVX instructions have a similar _mm256_shuffle
instruction operating on each half-vector and _mm256_permute2f128 to permute
both half-vectors. This is again sufficient for four double values, such that one
instruction can be used for shift one and the other for shift two, and the com-
bination gives shift three. However, we still can only handle groups of float2
values. Hence, two or four interleaved parts of the domain are stored in memory
in addition to some partial vector shift by one or two permute instructions.

Note that Intel Phi 512 bit vector instructions lead to flexible permute oper-
ations of groups of float4 _mm512_mask_permute4f128. The IBM Power AltiVec
instructions set is more flexible in vector rotate, but leads to a multi instruction
vector shift implementation.

5.3 Shifted Vectors on GPUs

In the GPU case vector shift can be implemented through Cuda __shared__

memory respectively OpenCL __local memory. In warp synchronous parallel
computing, i.e. short vectors of warp size, length 32 or 64 without explicit syn-
chronization instructions, shared memory has to be marked as volatile.
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Nvidia Kepler (capability ≥ 3.0) offers an additional vector shift for one
vector without shared memory by __shfl_up and __shfl_down instructions.
However, an implementation of a two argument vector shift still requires several
instructions.

The hardware multi threading of GPUs allows for larger vector sizes. Vector
shift can be implemented again through shared memory. Explicit synchronization
is needed via Cuda __syncthreads or OpenCL barrier. Now the sliding window
algorithms can be used again with shifted vectors [2].

6 Experiments

For reasons of comparison we perform experiments on a number of different
generations of CPUs and GPUs. Since there are large absolute performance dif-
ferences, in many cases we consider relative performance with respect to the
speed of the add or the fma pipeline, i.e. peak performance of the Finite Differ-
ence stencil. The absolute numbers for single processor cores can be recovered
by the number of operations per second times vector length in Tab. 2 and the
number of operations per stencil in Fig. 1.

6.1 Compiler

The experiments depend on the quality of the code. We have used the compilers
listed in Tab. 6. In most cases the gcc compilers gave superior x86 execution code.
The larger the code and the number of unrolled instructions, the larger was gap
between gcc version 4.7 and other compilers. Inspection of x86 assembly code
generated by the different compilers gave no obvious explanation and we spec-
ulate that the different clock-per-instruction rates are due to the optimization
level of instruction scheduling.

Table 6. List of C/C++ compilers in use. Sample compile time and performance com-
parison for a 3D 4th order example on an Intel Ivy Bridge CPU, compiler optimization
options -O3 -march=native, code with AVX intrinsics.

name version source compile performance
C C++ time [s] [GF]
gcc g++ 4.7.0 FSF 40.907 6.09
gcc g++ 4.6.3 FSF 14.284 6.14
clang clang++ 3.2 llvm 55.899 3.59
icc icpc 13.0.0 Intel 80.858 2.66

Source code loop unrolling and placement of vector elements in variables to
be mapped to registers was done by a custom source-to-source preprocessor. The
codes were written in C++ using SSE, AVX and FMA x86 vector intrinsics (if
applicable), Cuda, and OpenCL respectively. Experiments were run on Linux
Ubuntu 12.04 64-bit for x86 CPUs and Nvidia Cuda 5.0 for Nvidia GPUs. AMD
GPUs were run with AMD APP OpenCL 2.7 on Linux Ubuntu 11.04.
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6.2 Single Precision on a Single Core

The one dimensional experiments are summarized in the top rows of Figs. 3
and 5. The time slicing algorithm seems to be superior in most of the cases
compared to the sliding window. The amount of required registers grows with
the stencil order, such that the tile size is limited for time slicing, while the
amount of data re-use grows for sliding windows. Hence there will be a turn
over point at high order when sliding window is more efficient. However, this
point is not reached in the 1D experiments. The 1D results show extremely
high relative performance both for CPU and GPU. Some architectures have
difficulties for higher order time slicing due to a shortage of registers compared
to their floating point pipeline length. The detailed analysis in Fig. 4 shows that
vector shift instructions can help reduce the tile sizes and the register pressure
and improve higher order results.

In the 2D case, sliding window becomes superior for higher order stencils
on CPUs and Nvidia GPUs, while time slicing is still better on AMD GPUs
and generally for lower order stencils. Vector shift operations improve efficiency
above 2nd order stencils and the optimal tile sizes are rather small, see Fig. 6. In
the 3D case sliding window is superior to time slicing for all higher order stencils
on CPUs and generally on GPUs. In the 3D case and in the higher order 2D
case, large virtual vectors start to become superior to small warp synchronous
vectors on GPUs.

Anisotropic stencils in Fig. 7 introduce substantially more operations with
roughly the same memory traffic. However, the number of intermediate registers
required grows, such that time slicing for higher order or 3D runs out of registers
and almost constant performance sliding window starts to outperform time slic-
ing. The problem of a small register file is much more pronounced in 3D, where
performance always drops with increasing order.

6.3 Double Precision Arithmetic

A summary of the absolute performance in Tab. 7 and Tab. 8 show the per-
formance drop with increasing spatial dimension, which is mainly due to cache
access to fetch halo values in the outer loop directions. Furthermore, the time
slicing seems to be superior for the 1D case, while sliding window is improving
for higher dimensions.

Table 7. Absolute performance numbers of a single core CPU. Numbers of the time
slicing algorithm in single and double precision arithmetic. Colored numbers indicate
the shifted vector version. ∗ marks SSE on AVX enabled CPUs.

processor 1D 2D 3D
architecture name single double single double single double

[GF] [GF] [GF] [GF] [GF] [GF]
Intel Ivy Bridge i5-3450 55.2 27.6 36.9 18.7 20.1 9.4
Intel Sandy Bridge i7-2600 59.6 29.8 40.8 20.4 21.2 10.4
Intel Core Xeon E5405 15.8 7.9 10.8 5.4 7.2 3.2
AMD Bulldozer FX-8150 44.2 22.1 22.7∗ 11.3∗ 13.0 7.2∗

AMD K10 Opteron 6168 15.1 7.5 9.1 4.5 5.9 2.3
AMD K8 Opteron 865 5.8 2.5 4.3 2.1 2.6 0.9
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Fig. 3. Relative performance vs. stencil order of the sliding window and time slicing
algorithms on CPUs.
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performance vs. order p and tile size s.
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Fig. 7. 2D and 3D compact anisotropic FD stencil. Relative performance vs. stencil
order of sliding window and time slicing on CPUs.

The CPU double precision numbers are consistently one half of the single
precision. A 64 bit double number requires double the space in vector registers,
caches and memory. The throughput and latency of the floating point pipelines
remains the same in terms of vectors per time.

Double precision on GPUs is different: Cache and memory capacity and the
number of available registers is halved, the throughput changes by a factor of
1/24 to 1/2, see Tab. 2. Slower floating point pipelines relative to the mem-
ory bandwidth results in an increased relative performance for memory band-
width bound algorithms. The limited register file however results in smaller tile
sizes. The Nvidia Tesla numbers demonstrate roughly half the double precision
than single precision, consistent to the floating point performance. Slower dou-
ble precision pipelines show higher relative performance. The ratio of single to
double precision with increasing dimensions tends approach the ratio of mem-
ory throughput. Note that the AMD GPUs show even better double precision
performance.

6.4 Outlook

The answer to the general question of CPU versus GPU performance mainly
depends on metric of comparison, whether it be performance per core, per chip,
per price or per electric power. A single CPU or GPU architecture is available
as chips of different numbers of cores. These can be further aggregated into
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Table 8. Absolute performance numbers of a multi-processor GPU chip. Numbers in
single and double precision arithmetic of a time slicing (black) or a sliding window
shifted-vector (grey) algorithm. ∗ marks a shifted vector version of time slicing.

processor 1D 2D 3D
architecture name single double single double single double

[GF] [GF] [GF] [GF] [GF] [GF]
Nvidia Kepler GK110, Tesla K20c 1829 685 355 179 211 123
Nvidia Kepler GK104, GTX 680 1638 98.3 309 75.0 219 60.4
Nvidia Fermi GF100, Tesla C2050 655 302 241 116 196 98.6
Nvidia Fermi GF110, GTX 590 794 114 304 78.5 236 69.4
AMD South. Isl. GCN, HD 7970 1322 699 421 473 145 137
AMD North. Isl. VLIW4, HD 6990 560 403 96.4 79.1∗ 62.7 52.5

shared and distributed memory systems of several chips. A comparison will have
to balance the number of cores to compare, based on some criterion. So far we
compared single cores, which includes instruction level parallelism and vector
instructions.

Memory bandwidth bound algorithms on shared memory systems, especially
on multi-core processors, will not show substantial parallel speed-ups. However,
algorithms on private caches do scale. This is the case at least for one time slicing
algorithm in 1D [8] and we expect it for 2D (L1 and L2 cache) and for the sliding
window algorithm up to 3D. Beyond this, we expect a slow down due to shared
LL cache and main memory. However, also shared LL cache and main memory
usually scale for large numbers of cores. Note that the GPU experiments already
take this into account, as all GPU cores execute the algorithm. Hardware multi-
threading on Intel CPUs and two cores per module on AMD Bulldozer may
accelerate a multi-threaded code, as long as a single thread does not fully load
the floating point pipeline.

So far we neglected the treatment of the boundary nodes. However, in a
parallelization based on domain decomposition, expensive inter-processor com-
munication takes place by exchange of boundary data. Note that the algorithms
differ in the communication pattern, but not in the total amount of data to
transfer. The communication would again be more pronounced in higher dimen-
sions and for higher order stencils, where the ratio of boundary nodes to inner
nodes increases. We refer to [6, 14] for multi-core and to [4, 7] for distributed
memory.

7 Conclusions

We were able to develop efficient vectorized sliding window and time slice im-
plementations of Finite Differences in one, two and three dimensions, orders two
to twelve and isotropic and anisotropic symmetric operators, for CPUs with x86
AVX vector instrinsics and GPUs in Cuda and OpenCL. The optimization tech-
niques include various vectorization strategies, a change of data layout and loop
unrolling. The result showed whether one of the algorithms was able to sustain
high processor performance and to tolerate main memory latency: Time slicing
tends to be superior for smaller Finite Difference stencils and large cache hierar-
chies found on current CPUs, while sliding window was better for larger stencils
and larger register files like on GPUs.
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Interesting generalizations of the model problem include variable coefficient
difference stencils and systems of equations and hierarchies of grids with mesh
refinement and multigrid algorithms [6, 11–13]. The data access patterns are
more complex and the amount of data per grid point increases.
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