
A Container-Iterator
Parallel Programming Model

Gerhard Zumbusch

Friedrich-Schiller-Universität Jena,
Institut für Angewandte Mathematik,

Ernst-Abbe-Platz 2, 07743 Jena, Germany
zumbusch@mathe.uni-jena.de
http://cse.mathe.uni-jena.de

Abstract. There are several parallel programming models available for
numerical computations at different levels of expressibility and ease of
use. For the development of new domain specific programming models,
a splitting into a distributed data container and parallel data iterators
is proposed. Data distribution is implemented in application specific li-
braries. Data iterators are directly analysed and compiled automatically
into parallel code. Target architectures of the source-to-source translation
include shared (pthreads, Cell SPE), distributed memory (MPI) and hy-
brid programming styles. A model applications for grid based hierarchi-
cal numerical methods and an auto-parallelizing compiler are introduced.

Keywords: parallel programming models, automatic parallelization, do-
main specific code generation, parallel numerical methods, multigrid,
MPI, Posix threads, Cell processor.

1 Introduction

Development of parallel code for numerical computations is still an issue, for sev-
eral reasons: On the one hand, current computers are parallel computers, with
increasing degree of parallelism. On the other hand, parallelism is still very visi-
ble in the code: Current parallel programming models tend to be either limited in
their applicability, limited in their efficiency or lead to a low level of parallel pro-
gramming. Standard parallel programming models include thread libraries like
POSIX threads [1] and Intel’s TBB [2] on top, lightweight threads like in Cilk [3]
and Concur (Microsoft) [4], and OpenMP [5] for shared memory computers and
two- and single-sided message passing for distributed memory computers like in
MPI [6]. A higher level approach is represented by the loop- and array-parallel
HPF [7], Co-Array Fortran[8] and related Fortran version constructs to be gen-
eralized in projects like Chapel (Cray) [9] and Fortress (Sun) [10]. Distributed
shared memory techniques are refined in OpenMP on clusters (Microsoft), and
in the current evolution of splitted global address space languages like unified
parallel C (UPC) [11] and in the X10 (IBM) project [12].

In addition to efficient general purpose parallel programming models, easier
to use domain specific models are important. The simplicity of such a restricted

R. Wyrzykowski et al. (Eds.): PPAM 2007, LNCS 4967, pp. 1130–1139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Container-Iterator Parallel Programming Model 1131

computational model may have several advantages: For example, a single source
code may compile to efficient sequential and parallel code for different types of
parallel architectures, which is advantageous for code development and the life-
time of the code. Higher level program constructs may be automatically analysed
and compiled into parallel code, which is not possible for general programming
models. Compiler analysis may further assist and verify parallelization of the
code, such that common mistakes can be eliminated.

The container-iterator programming model we propose here is supposed for the
gap between expressibility and simplicity with numerical applications in mind.
Several parallel Fortran extensions focus on parallel vector and array expressions.
This is well suited for dense linear algebra and some finite difference methods,
but may be less adequate for sparse matrices, non-uniform Finite Element grids,
randomly distributed particles and other less structured numerical data. We try
to attack this problem by a split of the code into an iterator which handles the
non-uniformity of data in a container and a computational kernel applied to each
element of the container. This is equivalent to parallel arrays for array-structured
data with a slightly different syntax, but more flexible in other cases.

Shared memory programming models like OpenMP are not very well suited
for distributed memory environments. The abstraction of a parallel loop with
fixed bounds in early OpenMP revisions is a further severe restriction to the
application. However, OpenMP is far simpler to use than the underlying thread
programming model. We try to provide a programming model, which can be
both compiled to shared memory and distributed memory models. In the case
of a loop of independent operations, container-iterator is equivalent to OpenMP
parallel loops with a slightly different syntax.

Virtual shared memory programming models like UPC, which combine the
ease of use of shared memory (of certain coherence) with distributed memory
architectures rely heavily on the underlying distributed shared memory engine
and its coherence model. In the container-iterator model we try to create explicit
message-passing code by a data dependence analysis of the compiler. This is
possible due to the restriction to numerical applications and detailed knowledge
of the container. However, it is independent of the computational kernel, as long
as it really is a parallel algorithm.

Finally, parallel skeletons are based on a approach to parallel computing com-
parable to the container-iterator model. A collection of skeletons defines different
patterns of algorithms like a linear loop or a divide and conquer tree, see e.g. [13].
The user code is derived from a specific skeleton. The parallelization is done by a
compiler, which is able to transform each skeleton into parallel code. Some differ-
ences to the compiler-iterator model are: We start from a global persistent data
decomposition transparent to the code, such that several parts of the algorithm
can be applied to the container, one after the other. The user codes derived from
an iterator may have different dependencies leading to different communication
patterns, each of which can be detected by a compiler dependence analysis. Some
communication patterns are currently not available in parallel skeletons. However,

1132 G. Zumbusch

ForEach(iteration_variables, iterator, code);: syntax.
iteration_variables: C++ declaration of access variables to container elements,

e.g. ‘int i, int j’ or ‘tree *b’.
iterator: instance of an iterator, includes container specification (like bounds or root

pointer) and type of iteration.
code: regular C++ function body code. The iteration_variables are defined in the

code and point to the current atom. Certain restrictions apply to the access of
other atoms (dependency) and variables of outer scopes (read only or reduction).

Fig. 1. A formal parallel iterator

given appropriate compilation techniques and support libraries, the container it-
erator approach could be interpreted as a flavour of parallel skeletons.

The compilation technique we propose here uses static analysis. In fact it is
incorporated in an experimental C++ compiler based on the current 4.2.1 Gnu
gcc release. The remaining parts of the system are some pre- and post-processing
facilities using m4 macro processor and perl scripts for code generation and
C++ run-time libraries. A previous version of the system [14] was based on
a speculative run-time analysis performed with a standard C++ compiler and
different scripts. Related projects include the Rose compiler [15] and expression
template libraries like Pooma [16].

2 The Container-Iterator Programming Model

In the domain of numerical software, good strategies to parallelize a given se-
quential implementation are often known. Larger sets of data can often be de-
composed and mapped to coupled parallel tasks efficiently, e.g. many codes for
the solution of partial differential equations, particle methods and other “local”
methods which respect physical space. Some examples and many references can
be found in [17]. Further, the sequential algorithm does not need to be changed,
but often can be re-arranged according to the data decomposition.

We assume that data is organized in a large container of similar smaller units,
called atoms. The sequential algorithms operate on all or parts of the atoms in
a similar way and in a given order. Parallelization means to schedule operations
on different atoms of an algorithmic step. This is a data parallel approach.

A formal description of the iterator can be found in figure 1. The syntax is
similar to the C++ for-loop for(iteration variable declaration and initialization;
upper bound; increment){code}, which is also used in the C++ STL [18] for
iterators on arbitrary containers. We prefer to place the body code always right
next to the loop iterator instead of a separate class definition (like in TBB [2]),
which can also be done using the C++ Boost library lambda expressions [19]
like in Concur [4].

Note that the container-iterator model does include, but is not limited to
a contiguous data vector or an ascending access of totally ordered atoms. For
example the model also includes different ways to access leaves of a tree. How-
ever, the access order and the parallelism of the operation follow from the data

A Container-Iterator Parallel Programming Model 1133

dependency of the atoms. This can be detected by the compiler and need not
be specified in the code. Note that we need more algorithmic patterns than just
divide and conquer, see e.g. [20].

We restrict ourselves to numerical algorithms and a data container-iterator
programming model. Further, we assume that a good domain specific data de-
composition scheme is available. Now, numerical algorithms can be written as
a sequence of (parallel) iterators and sequential operations. An iterator consists
of a specification of the iteration space and a code fragment for the algorithmic
atom. The atom will be executed for each element of the iteration space. The
atom can be analysed using standard compilation techniques such as data de-
pendency and flow analysis. The goal is to facilitate automatic parallelization.
Compilation targets are shared memory and different distributed (virtual shared)
memory systems with their respective low level programming models. hybrid ar-
chitectures such as clusters of shared memory nodes, hierarchies of tightly and
weakly coupled systems can be targeted with a mixture of message passing and
multiple threads. Further, specialised architectures like the Cell processor [21]
can be targeted, which will be described in more detail.

Note that this programming model also covers cases of loop and array par-
allelism addressed in OpenMP and some Fortran versions. It does not contain
explicit parallel commands and it is not as expressive as UPC and as low level
parallel programming models.

3 Sample Containers and Iterators

As an illustrative example for the container-iterator programming style, we show
how it looks like for two domain specific extensions of C++, see figures 2 and
3. We have constructed a source-to-source compilation system which translates
the domain specific code into standard C++ code with a domain specific library
and a standard parallel programming model.

Figure 2 give a brief sketch of the different code stages of the source-to-source
translation system. On top is a code sample of the container-iterator program-
ming model. A one-dimensional grid, an iterator over an interval and a vector
data structure are constructed. The ForEach loop features nearest neighbour ac-
cess y(-1), y(+1) and a global reduction e. On the left, the code is transformed
into a sequential for loop. On the right, a data dependence analysis, based on
the extended Gnu g++ compiler lists load, sore and reduction operations. This
analysis is transformed into a pthread code (left), MPI code (middle) and a Cell
processor code (right). Note that the loop is split into two parts for the pthread
code and even into different files (for incompatible PPU and SPU binaries) for
the Cell processor. Further, the necessary send and receive (MPI [6]) or get and
put (Cell, see [26]) commands are generated using the data dependence analysis.

An application specific library provides data containers like uniform grids
implemented as multi-dimensional arrays or a hierarchical decomposition of
a set of particles implemented as quad-trees. In each case a geometric do-
main decomposition works well for parallelization. The applications in mind
based on the containers include the solution of partial differential equations

1134 G. Zumbusch

�������	�
�

���
���	���������������������
�������������	�
� �!

������"�#$
��%

���
��&	�'������������(��������
������������"�#$
� �!

���
���	���������������������
������������"�#$
� �!

)

�������	�
�

���
��&	�'������������*��������
�������������	�
� �!

��+,�	�	�������-��!

��"����
��-��������!��.��������!��((��%

��/����(-������(���(����*����0 1!

��	�������(-�23"��������!

)

�
��4��&	�+�	��	���������	������
�����������
������ �!

'����02+,��'����0�"#��%

��

����+,�	�	�������-��!

����"����
��-��������!��.��������!��((��%

����/����(-������(���(����*����0 1!

����	�������(-�23"��������!

��)

��'	�*5	�-�	������!

)

��"����
��-�!��.��
$"	��2!��((�

���
$"	����"	�
	��
$"	��26�7��
$"	��4

"�

���������������������������2+,����'����0�'	�6�7�!

��"����
��-�!��.��
$"	��2!��((��%

���
$"	���8����
$"	��26�7��9����!

��	�(-�'	�6�7*5	!

)

��"����
��-�!��.�!��((��%

��/����(-������(���(����*����0 1!

��	����(-�23"��������!

)

:�"���$���
�����
�

/����(-������(���(����*����0 1!

	����(-�23"��������!��

;"����0#�-��	<�;"��������(��!

;"����
	"�
�"�+,��
�������#�!

��2
4""��.��+,�	5�/�#�����#�!

��+,�	�	�-��!

domain language

analysis

sequential
code

MPI message passing parallel code

pthread parallel code

��������*�������������(��

2
�"	�/���

"	�+�	�����	

application library

'����02+,��'����0�"#��%

��2�	����
	/
�"+�� �!

)

��"����
��-�!��.2�	!��((��%

��2�	����
	/
��"	�
	� �

��2�	��"�#"�=������ �

���
$"	����"	�
	� �!

)

��"����
��-�!��.2�	!��((��%

���
$"	���8���� �!

��2�	����
	/
��	2
"��� �!

��	�(-�'	�6�7*5	!

)

��
�=����+�2�#�	�����#����#����

����������������">?��"#������">?�	�'���%

��=���#	
� �!

��=���"	���
�#�2
�
+2������!

��

����+,�	�	�������-��!

����"����
��-��������!��.��������!��((��%

����/����(-������(���(����*����0 1!

����	�������(-�23"��������!

��)

��=����+
� �!

��=���"	���
�#�2
�
+2������!

)

Cell SPElib:
SPU+PPU parallel code

Fig. 2. Source-to-source transformation of the domain language to several target pro-
gramming models (Posix threads, MPI message passing, Cell processor SPE library).
Vector/ one dimensional grid example.

(finite elements, finite differences, multigrid solver, grid refinement), fast sum-
mation techniques (fast multipole expansion) and integral equations. Array op-
erations may look like figure 2.

Particle methods, unstructured grids with refinement and fast summation
techniques may require a programming style like in figure 3. Note that the op-
erations on the tree nodes are no longer independent in some cases. However, a
bottom-up or top-down iteration still offers enough parallelism for an efficient
parallelisation. The basic access patterns for a fast multipole summation [22] are
given for a binary tree, which easily generalises to quad- or oct-trees.

class tree : public KAryTree<class tree, 2>
public: // generic binary tree provides tree* child(int);

complex<double> m, l, f, x;
tree *root = new tree;
TreeIterator<tree> iter(root);

ForEach(tree *b, iter, b->f = b->l;)

ForEach(tree *b, iter, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->child(i)->l += b->l; ’)

ForEach(tree *b, iter, ‘
for (int i=0; i<2; i++)

if (b->child(i)) b->m += b->child(i)->m; ’)

Require(list<tree*> inter, fetch);
ForEach(tree *b, iter, ‘
for (list<tree*>::const_iterator i = b->inter.begin();

i != b->inter.end(); i++)
b->l += log(abs(b->x - (*i)->x)) * (*i)->m; ’)

Fig. 3. Binary tree examples: Declaration, embarrassingly parallel, top-down (no com-
munication with replicated root), bottom-up (communication upwards), top-down with
neighbourhood communication defined by a relation ‘fetch’

A Container-Iterator Parallel Programming Model 1135

The analysis of the first ForEach in figure 3 gives a local read ‘l’ and a local
write ‘f’ leading to an embarrassingly parallel loop over all atoms. The second
ForEach gives a local read ‘l’ and child read and write ‘l’. This does only make
sense for a top-down tree traversal. For distributed memory, the variable ‘l’ must
be provided in the ghost atoms. The third ForEach gives the reverse local read
and write ‘m’ and child read ‘m’, which only makes sense for bottom-up traversal.
Variable ‘m’ has to be sent in message passing. Finally the last ForEach introduces
an indirect addressing. Dependence analysis includes local variable ‘l’ and remote
variables ‘m’ and ‘x’. The user provided relation ‘fetch’ gives a hierarchical hull of
all candidates of the remote atoms. In the fast-multipole and some Finite Element
algorithms the relation is based on the geometric distance of atoms.

4 A Sample Compilation System

The sample compilation system translates the extended C++ code using the
container-iterator parallel programming model into plain C++ code using stan-
dard parallel programming models according to figure 2. The source-to-source
translation seems to enable more flexibility than a direct single pass-compiler and
can be considered as code generation [23]. Currently it is implemented using a
general code dependence analysis tool and container/ iterator specific scripts.
The tool uses the front end and some of the optimization stages of the back
end of the Gnu gcc compiler (C++ front end, current release version 4.2.1). It
dumps data type and dependency information extracted from the internal tree-
ssa (static single assignement) language independent code representation. This
includes names and types of outer-scope variables which are read, written, or
updated in the code. Special mechanisms exist for updates leading to reduc-
tion operations.The post-processing for different targets uses a sequence of perl
scripts. the code generation itself is performed by the m4 macro processor.

The idea of the parallelizing compiler is to do a certain global data dependence
analysis. The user code is analysed for each atom separately, see code in figure 1.
The ForEach loop is expanded into an iterator, which executes the atom for each
node of the data container. For the parallel implementation, we control both
global data distribution and the parallel iterator. Standard strategies include
the use of distributed atoms with an “owner-computes” policy. Communication
is be implemented through a small amount of replicated atoms like ghost zones or
a common replicated root. Whether replicated data is computed locally, updated
by message passing, put into shared memory or discarded in an algorithmic step
depends on the parallel iterator and the communication pattern.

The data dependence analysis of each atom is passed to templates of parallel
iterators. For each parallel target, be it message passing, threading or a mixed
model, and for each possible communication pattern there exists a different
parallel implementation of the iterator. One part of the templates can be found
in the domain specific library. The remaining parts, including the selection and
invocation of the correct template and the variables to be transferred or up-
dated are located in the result of the source-to-source translation. The whole
process can be considered as a compilation with a single coarse grain dependence

1136 G. Zumbusch

analysis. However, clever constructions of expression templates or parallel skele-
tons may lead to comparable results for certain containers, see Pooma [16].

Note that the source-to-source transformation process does create the same
number of communication operations than hand coded examples. Hence message
passing parallel code on distributed memory computers is expected to perform
comparable. The performance of multi-threaded code on shared memory com-
puters heavily depends on the data and memory layout. This is given by the
application library, not the code transformation system. Hence, even in this case
a competitive performance is expected.

5 Experiments

We consider a hierarchical, three-dimensional numerical grid/array code as a
test example with pthread and Cell processor as target computer architecture.
Message passing MPI results and results for numerical tree codes of the older
(speculative analysis) container-iterator translation system can be found in [25]
and [14] respectively.

The NAS multigrid benchmark code Fapin [24] implements a geometric multi-
grid V0,1-cycle with one post-smoothing step for a Poisson equation on a set
of nested three-dimensional cartesian grids with constant coefficients. The For-
tran77 code was ported C++ using the distributed array classes, single precision
floating point numbers and run on other data sets (7 levels, fine grid 1293) than
originally conceived, in order to fit into the main memory (256 Mbytes) of a
Sony Playstation3 with a Cell processor.

First we consider the Posix thread (pthread) and the sequential versions of
the code. Table 1 shows execution times for different platforms: A four dual-core
AMD Opteron processor system at 1.8GHz (Linux, gcc 3.4.6), a two dual-core
Intel Xeon 5110 processor system at 1.6GHz (Linux, g++ 3.4.6), a 1GHz six-core
quad-issue Sun T1 processor (with limited floating point performance) (Solaris,
SunStudio 11 CC) and a dual-core Intel Centrino Duo T2300 system at 1.66GHz
(Windows XP, g++ 3.4.4).

The pthread implementation, which imposes slight parallel overhead, on a
single processor core runs almost as fast as the sequential version. Increasing the
number of cores gives good speedup. Note that computational work on coarser
grids is performed on a single core for efficiency reasons, and finer grids are
distributed to all cores. However, the exact break even point for the strategy

Table 1. Execution times of the multigrid example, wall clock in sec. Sequential and
pthread parallel versions.

no. of threads 1 1 2 3 4 5 6 7 8 12 18 24

6 cores Sun T1 57.3 85.8 44.4 30.0 22.5 18.3 16.1 17.3 15.3 13.0 13.1 13.1
4 * 2 cores AMD64 2.10 2.11 0.93 1.41 1.26 1.16 1.11 1.06 1.05

2 * 2 cores Xeon 1.61 1.59 1.07 0.83 0.77
2 cores Centrino 1.70 2.06 1.14

A Container-Iterator Parallel Programming Model 1137

has not been optimised for each architecture. Note that the dual issue PowerPC
processor of Cell also benefits from pthread parallelism, Windows seem increase
the threading overhead, the AMD numbers show large variations due to memory
affinity, and the test case is relatively small for large servers.

Now, we consider the genuine Cell processor implementation. Different pro-
gramming models in C/C++ are possible, see [26]. The PPU (host) and SPU
(worker) execute different binaries and can be considered as heterogeneous multi-
threading. However, local memory size (256 kbytes) and main memory access
(direct memory access DMA block transfer only) of the SPUs is limited and the
performance characteristics of both core types are different, see [21]. We chose
the function off-load programming model. The main code and data resides on
the host PPU. Each for loop is executed on SPUs. The current binary SPU code
is downloaded to the SPU, executed and the PPU wait for the SPU termina-
tion. The SPU features no direct memory access, no cache, but user instantiated
DMA block transfers. Hence the SPU code loads a data block which fits into
local memory, performs the for loop on the block and write data back to main
memory. This process is repeated until all data is processed. In order to hide the
effect of DMA memory access, a double buffer strategy is employed. Read and
write operate on data in one buffer, computations on data in the other buffer.
Afterwards both buffers are swapped. Further difficulties arise from the fact that
DMA memory access has to be aligned to host cache lines of 128 bytes size.

Table 2 shows again preliminary execution times for different numbers of
cores. The Sony Playstation3 is based on a Cell processor featuring a dual-issue
PowerPC (PPU) and 7 synergistic units SPUs. Six SPUs are available to the
user code. We present the numbers for sequential and pthread parallel PPU code
for comparison. The next line shows numbers for complete function off-load to
the SPUs. Note that the number of SPUs involved on coarser grids is smaller
for reasons of efficiency. We show numbers with a mixed SPU/PPU execution
model, where coarse grid computations remain on the PPU, while fine grids are
distributed over the SPUs. The wall clock time with Yellow Dog Linux and IBM
xlC 8.2 SPU and PPU compilers show the performance of the PowerPC PPU,
an SPU implementation with non-overlapping communication (single buffer) and
multi-buffer implemementation without and with explicit Altivec parallel SIMD
instructions on the SPU.

We obtain a decreasing execution time for larger numbers of cores. The sin-
gle SPU performance on small data sets is slow compared to the PPU and its
theoretical performance. Some additional experiments may explain this: Usual
optimization uses SIMD vector operations for 4 floating point values per word,
which is in our does pay off. Start-up times and synchronisation of 6 SPUs ac-
counts for 0.43s, the sequential PPU computations for 0.19s. A strategy to fuse
several loops into one SPU code to avoid repeated code load (code size of roughly
85kbytes per ForEach) has to be weighted against additional synchronisation.
The remaining time is spent by SPU initiated memory transfer and overlapped
computations. Further, there is a strong influence of local buffer size. We expect
larger local memory size to improve overall performance. However, preliminary

1138 G. Zumbusch

Table 2. Execution times of the multigrid example, wall clock in sec on Cell processor.
PPU, SPU and SPU with Altivec SIMD instructions.

no. of threads 1 2 3 4 5 6

PPU 3.12 2.56
SPU, single buffer 3.29 1.69 1.52 1.44 1.43 1.42

SPU 2.00 1.31 1.15 1.07 1.03 1.01
SPU+Altivec 1.79 0.97 0.89 0.85 0.83 0.83

results indicate major bottleneck of main memory size. Larger problem sizes are
expected to give better vector and parallel efficiency.

6 Conclusions

A domain specific parallel programming model is presented, which allows for
efficient automatic parallelization of numerical computations. However, it is de-
signed as a set of domain dependent language extensions. An application specific
library provides a (distributed) data container. Further, iterators are defined on
the data containers. An application, which is written as a sequence of itera-
tors can be parallelized: The iteration code is compiled into source code using
standard parallel programming models.

Acknowledgements

I want to thank the anonymous referees for their helpful comments. This work
was partially supported by DFG grant SFB/TR7 “gravitational wave astron-
omy”. Current versions of the compiler, libraries and benchmark codes are avail-
able at http://parallel-for.sourceforge.net.

References

1. Butenhof, D.R.: Programming with POSIX Threads. Addison-Wesley, Reading
(1997)

2. Reinders, J.: Intel Threading Building Blocks. O’ Reilly (2007)
3. Blumofe, R.D., Joerg, C.F., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk: An

efficient multithreaded runtime system. In: 5th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming PPoPP 1995, pp. 207–216. ACM,
New York (1995)

4. Sutter, H.: The Concur project: Some experimental concurrency abstractions for
imperative languages (2006), slides at:
http://www.nwcpp.org/Downloads/2006/The Concur Project - NWCPP.pdf

5. Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.: Parallel
programming in OpenMP. Morgan Kaufmann, San Francisco (2000)

6. Pacheco, P.: Parallel programming with MPI. Morgan Kaufmann, San Francisco
(1996)

http://www.nwcpp.org/Downloads/2006/The_Concur_Project_-_NWCPP.pdf

A Container-Iterator Parallel Programming Model 1139

7. Koelbel, C.: The High Performance Fortran handbook. MIT Press, Cambridge
(1993)

8. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM Fortran
Forum 17(2), 1–31 (1998)

9. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel programmability and the
Chapel language. Int. J. high perf. computing 21(3), 231–312 (2007)

10. Steele, G.: Parallel programming and parallel abstractions in Fortress. In: Proc.
14th Int. Conf. on Parallel Architectures and Compilation Techniques, pp. 157–
160. IEEE, Los Alamitos (2005)

11. Ghazawi, T.E., Carlson, W., Sterling, T.L.: Distributed shared-memory program-
ming with UPC. Wiley, Chichester (2005)

12. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V.: X10: An object-oriented approach to non-uniform cluster
computing. In: Proc. 20th ACM conf. on object oriented programming, pp. 519–
538. ACM Press, New York (2005)

13. Herrmann, C., Lengauer, C.: HDC: A higher-order language for divide-and-
conquer. Parallel Proc. Let. 10(2/3), 239–250 (2000)

14. Zumbusch, G.: Data parallel iterators for hierarchical grid and tree algorithms. In:
Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128,
pp. 625–634. Springer, Heidelberg (2006)

15. Quinlan, D., Schordan, M., Yi, Q., de Supinski, B.R.: Semantic-driven paralleliza-
tion of loops operating on user-defined containers. In: Rauchwerger, L. (ed.) LCPC
2003. LNCS, vol. 2958, pp. 524–538. Springer, Heidelberg (2004)

16. Oldham, J.D.: POOMA. A C++ Toolkit for High-Performance Parallel Scientific
Computing. CodeSourcery (2002)

17. Griebel, M., Knapek, S., Zumbusch, G.: Numerical simulation in molecular dynam-
ics. Springer, Heidelberg (2007)

18. Austern, M.H.: Generic programming and the STL. Addison-Wesley, Reading
(1999)

19. Järvi, J., Powell, G.: The lambda library: Lambda abstraction in C++. In:
Proc. 2nd workshop on C++ Template Programming at OOPSLA 2001 (2001),
http://www.oonumerics.org/tmpw01

20. Birken, K.: Semi-automatic parallelisation of dynamic, graph-based applications.
In: Proc. Conf. ParCo 1997, pp. 269–276. Elsevier, Amsterdam (1998)

21. Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.:
Introduction to the Cell multiprocessor. IBM J. Res. & Dev. 49(4/5), 589–604
(2005)

22. Warren, M.S., Salmon, J.K.: A portable parallel particle program. Comput. Phys.
Commun. 87(1–2), 266–290 (1995)

23. Lengauer, C.: Program optimization in the domain of high-performance parallelism.
In: Lengauer, C., Batory, D., Consel, C., Odersky, M. (eds.) Domain-Specific Pro-
gram Generation. LNCS, vol. 3016, pp. 73–91. Springer, Heidelberg (2004)

24. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L.,
Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D.,
Venkatakrishnam, V., Weeratunga, S.K.: The NAS parallel benchmarks. Inter. J.
Supercomp. Appl. 5(3), 63–73 (1991)

25. Zumbusch, G.: Data dependence analysis for the parallelization of numerical tree
codes. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA
2006. LNCS, vol. 4699, pp. 890–899. Springer, Heidelberg (2007)

26. IBM: Cell Broadband Engine Programming Tutorial. 2.1 edn. (2007)

http://www.oonumerics.org/tmpw01

	A Container-Iterator Parallel Programming Model
	Introduction
	The Container-Iterator Programming Model
	Sample Containers and Iterators
	A Sample Compilation System
	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

