Minimizing Absolute Gaussian Curvature Locally

Joachim Giesen

Surface Reconstruction

Mesh Smoothing

Tight Surfaces

- A surface is called tight if every hyperplane cuts the surface into at most two pieces (two piece property).
- ► Examples include convex polyhedra, torus of revolution.
- Generalization of convexity.

Absolute Gaussian Curvature

► Tight surface ⇔ total absolute Gaussian curvature minimal.

Definitions

Gaussian Curvature

- For a smooth surface, the Gaussian curvature is the product of the principal curvatures.
- For a polyhedral surface, $K_v = 2\pi \sum_i \alpha_i$.

Absolute Gaussian Curvature K_{v}^{*} :

- ▶ For a smooth surface: absolute value of Gaussian curvature.
- ► For a polyhedral surface:
 - v in the convex hull of neighbors N_v $\Rightarrow K_v^* = \sum_i \alpha_i - 2\pi.$
 - v outside the convex hull of N_v $\Rightarrow K_v^* = 2\pi - 2\sum_i \beta_j + \sum_i \alpha_i.$

Integral Geometry

•
$$K_v^* = \frac{1}{2} \int_{d \in \mathbb{S}^2} |1 - i_{d,v}| do$$

Captures the "extent" of tightness of a surface.

Problem Statement

Given a polygon C in \mathbb{R}^3 , find a point v in \mathbb{R}^3/C such that the absolute Gaussian curvature of v with respect to C is minimized.

An Example

Non-constructiblity of an algebraic number

- Non constructibility of an algebraic number ⇒ cannot be expressed as finite sequence of +, -, *, / and kthroot.
- ► Non constructibility ⇔ minimal polynomial is unsolvable.
- ► Rational polynomial is unsolvable ⇔ its Galois group is unsolvable
- S_n is unsolvable for $n \ge 5$.

Theorem. The solution to the curvature minimization problem is in general not constructible.

In other words...

There exists a polygon C whose vertices have rational co-ordinates, but the co-ordinates of the unique solution are not constructible.

Construction of the Base Polygon

Construction of the Perturbed Polygon

Key Ideas of the Proof

- For sufficiently small perturbations of the base polygon the solution to the problem is unique and is in the interior of l.
- ► The solution is the global minimum and hence also a local minimum on *l*.
- The zero derivative condition of the local minimum can be converted into the vanishing of a rational polynomial.
- There are infinitely many of these rational polynomials with Galois group S₁₀ as the perturbation tends to zero.

Some details of the Analysis

- ► For small perturbations of the base polygon the global minimum is still in the neigborhood of *l*.
- For the base polygon, the gradient of K^{*}_v does not vanish in the neighbourhood of ℓ.
- For small perturbations of the base polygon this condition still holds!

Approximating the value of the solution

- ► Algebraic hardness ⇒ in general a solution cannot be computed exactly in the model of computation where roots of a polynomial are obtained from basic operations and kth roots
- > As an alternative, approximate the solution in value.

Approximation Algorithm

 Discretize S² by projecting the kth order triangulation of the regular icosahedron.

Choose the circum centers of the triangles as the set of sampling directions D_k.

Approximation Algorithm

► This set of directions D_k induces a hyperplane arrangement in ℝ³. Each cell in the arrangement has the same approximate curvature.

- Compute the approximate curvature
 K^{*}_v = 1/2∑_{d∈D_k} w_k(d)|1 − i_{d,v}| for each cell, where w_k(d) is the area of the spherical triangle for direction d.
- Pick a point in a cell with minimum value of approximate curvature.

Analysis

- For each v ∈ ℝ³, we get a great circle arrangement C_v on the sphere such that all directions in a cell of this arrangement have the same index.
- ▶ We only make approximation errors when a spherical triangle associated with D_k intersects a great circle in C_v.
- For each spherical triangle, the error is bounded by $(n/2-1)w_k(d) \in O(n/k^2)$.
- Each great circle intersects at most O(k) spherical triangles.
- Error of $O(n/k^2)$ can be made on O(nk) triangles $\Rightarrow O(n^2/k)$ bound on the total error.

Open Problem

An efficient algorithm to approximate the solution in location.