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Surface Reconstruction



Mesh Smoothing



Tight Surfaces

I A surface is called tight if every hyperplane cuts the surface
into at most two pieces (two piece property).

I Examples include convex polyhedra, torus of revolution.

I Generalization of convexity.



Absolute Gaussian Curvature

I Tight surface ⇔ total absolute Gaussian curvature minimal.



Definitions

Gaussian Curvature

I For a smooth surface, the Gaussian curvature is the product
of the principal curvatures.

I For a polyhedral surface, Kv = 2π −
∑

i αi .
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Absolute Gaussian Curvature K ∗

v :

I For a smooth surface: absolute value of Gaussian curvature.

I For a polyhedral surface:

I v in the convex hull of neighbors Nv

⇒ K∗

v =
∑

i αi − 2π.
I v outside the convex hull of Nv

⇒ K∗

v = 2π − 2
∑

j βj +
∑

i αi .

i+1αiα

βi



Integral Geometry

I K ∗

v = 1

2

∫
d∈S2 |1 − id ,v |do

I Captures the ”extent” of tightness of a surface.
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Problem Statement

Given a polygon C in R
3, find a point v in R

3/C such that the
absolute Gaussian curvature of v with respect to C is minimized.



An Example



Non-constructiblity of an algebraic number

I Non constructiblity of an algebraic number ⇒ cannot be
expressed as finite sequence of +,−, ∗, / and k throot.

I Non constructibility ⇔ minimal polynomial is unsolvable.

I Rational polynomial is unsolvable ⇔ its Galois group is
unsolvable

I Sn is unsolvable for n ≥ 5.



Algebraic Hardness Result

Theorem. The solution to the curvature minimization problem is in
general not constructible.

In other words...
There exists a polygon C whose vertices have rational co-ordinates,
but the co-ordinates of the unique solution are not constructible.



Construction of the Base Polygon

l



Construction of the Perturbed Polygon

l



Key Ideas of the Proof

I For sufficiently small perturbations of the base polygon the
solution to the problem is unique and is in the interior of `.

I The solution is the global minimum and hence also a local
minimum on `.

I The zero derivative condition of the local minimum can be
converted into the vanishing of a rational polynomial.

I There are infinitely many of these rational polynomials with
Galois group S10 as the perturbation tends to zero.



Some details of the Analysis

I For small perturbations of the base polygon the global
minimum is still in the neigborhood of `.

I For the base polygon, the gradient of K ∗

v does not vanish in
the neighbourhood of `.

I For small perturbations of the base polygon this condition still
holds!



Approximating the value of the solution

I Algebraic hardness ⇒ in general a solution cannot be
computed exactly in the model of computation where roots of
a polynomial are obtained from basic operations and k th roots

I As an alternative, approximate the solution in value.



Approximation Algorithm

I Discretize S2 by projecting the k th order triangulation of the
regular icosahedron.

I Choose the circum centers of the triangles as the set of
sampling directions Dk .



Approximation Algorithm

I This set of directions Dk induces a hyperplane arrangement in
R

3. Each cell in the arrangement has the same approximate
curvature.

I Compute the approximate curvature
K ∗

v = 1/2
∑

d∈Dk
wk (d)|1 − id ,v | for each cell, where wk(d) is

the area of the spherical triangle for direction d .

I Pick a point in a cell with minimum value of approximate
curvature.



Analysis

I For each v ∈ R
3, we get a great circle arrangement Cv on the

sphere such that all directions in a cell of this arrangement
have the same index.

I We only make approximation errors when a spherical triangle
associated with Dk intersects a great circle in Cv .

I For each spherical triangle, the error is bounded by
(n/2 − 1)wk (d) ∈ O(n/k2).

I Each great circle intersects at most O(k) spherical triangles.

I Error of O(n/k2) can be made on O(nk) triangles
⇒ O(n2/k) bound on the total error.



Open Problem

An efficient algorithm to approximate the solution in location.
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