@comment{{This file has been generated by bib2bib 1.91}}
@comment{{Command line: /usr/bin/bib2bib pub.bib}}
@inproceedings{Bruaset.Langtangen.Zumbusch:1998,
  author = {A. M. Bruaset and H. P. Langtangen and G. W. Zumbusch},
  title = {Domain Decomposition and Multilevel Methods in
		  {D}iffpack},
  booktitle = {Proceedings of Domain Decomposition Methods 9, DD9},
  pages = {655--662},
  year = {1998},
  editor = {P. E. Bj{\o}rstad and M. S. Espedal and D. E. Keyes},
  publisher = {Domain Decomposition Press},
  address = {Bergen, Norway},
  note = {also as report STF42 F96017, Sintef Applied Mathematics,
		  Oslo, 1996 },
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/zumbusch/dd9book.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/dd9book.pdf},
  abstract = {... Domain decomposition and multilevel methods contain a
		  variety of more standard numerical building blocks (linear
		  solvers, matrix assembly, interpolation of fields etc.).
		  Successful software for complicated applications must offer
		  the user a flexible run-time combination of all these
		  different components. The purpose of the present paper is
		  to describe how one can achieve such flexible software. In
		  particular, we present a unified framework for domain
		  decomposition and multilevel methods, and show how this
		  framework can be efficiently implemented in existing
		  software packages for PDEs. \\ The unified framework about
		  to be presented is in part well known from the analysis of
		  overlapping and non-overlapping methods [M. Dryja O.B.
		  Widlund 1990 ], as well as from theory for overlapping and
		  multilevel schemes [J. Xu 1992]. In this context, the goal
		  of this paper is to extend the known framework to cover
		  even more methods in common use, especially some Schur
		  complement and nonlinear schemes. We will formulate the
		  framework in a novel way that encourages systematic
		  implementation of a wide class of domain decomposition and
		  multilevel methods. Finally, we report on the experiences
		  gathered from a particular implementation in the Diffpack
		  software.}
}
@incollection{Cai.Bruaset.Langtangen.ea:2003,
  author = {X. Cai and A. M. Bruaset and H. P. Langtangen and G. T.
		  Lines and K. Samuelsson and W. Shen and A. Tveito and G.
		  Zumbusch},
  title = {Performance Modeling of PDE Solvers},
  booktitle = {Advanced Topics in Computational Partial Differential
		  Equations},
  pages = {361--400},
  publisher = {Springer},
  address = {Berlin, Germany},
  year = {2003},
  editor = {H. P. Langtangen and A. Tveito},
  volume = {33},
  series = {Lecture Notes in Computational Science and Engineering},
  chapter = {9},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/cpu_measurements.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/cpu_measurements.pdf},
  abstract = {The primary purpose of this report is to collect some
		  information on the CPU-time consumption in a series of
		  typical numerical simulations for solving partial
		  differential equations (PDEs). We would like to establish,
		  through analyzing the CPU-measurements, the performance
		  model for a number of numerical methods when applied in
		  different model problems. All the simulators, i.e. the
		  software programs carrying out the simulations, have been
		  developed using Diffpack which is a generic C++ library
		  based on object-oriented programming techniques. Therefore,
		  the established performance models may offer a rough
		  prediction of real CPU-time consumption by actual Diffpack
		  simulators for practical problems. Additionally, the report
		  can also be regarded as an investigation of the
		  computational efficiency of the current Diffpack
		  implementations. Last but not least, we wish to point out
		  to Diffpack programmers some implementation issues that may
		  affect the performance of the simulators. }
}
@article{Griebel.Kiefer.Zumbusch:2000,
  author = {M. Griebel and F. Kiefer and G. Zumbusch},
  title = {{V}org{\"a}nge m{\"o}glichst realit{\"a}tsnah simulieren.
		  {W}issenschaftliches {R}echnen als neue {D}imension in der
		  {F}orschung},
  journal = {Bonner Universit\"{a}tsnachrichten},
  address = {Bonn, Germany},
  year = {2000},
  volume = {217},
  pages = {48--49},
  month = {January},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/bun217.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/bun217.pdf},
  http = {http://cse.mathe.uni-jena.de/pub/zumbusch/bun217.html},
  annote = {editorial},
  note = {also as `Simulating Processes as Realistically as
		  Possible', Bonn University News International (BUNI),
		  7:28--29, November 2000},
  abstract = {Computer werden immer schneller und leistungsfähiger. Das
		  gilt nicht nur für den Personalcomputer im Büro, sondern
		  auch für die weltweit schnellsten
		  Hochleistungs-Parallellrechner, die heute schon mehr als
		  eine Billion Rechen-Operationen in nur einer Sekunde
		  ausführen können. Insbesondere durch sie hat sich mit dem
		  "Wissenschaftlichen Rechnen" und der "Numerischen
		  Simulation" in den Naturwissenschaften neben dem
		  traditionellen praktischen Weg (Experiment und Beobachtung)
		  und dem theoretischen Ansatz (mathematische Formulierung)
		  ein vielversprechender dritter Weg herausgebildet, um die
		  Wirklichkeit zu beschreiben. In Bonn arbeiten die
		  Spezialisten dieses Fachgebiets in der Abteilung für
		  Wissenschaftliches Rechnen und Numerische Simulation im
		  Institut für Angewandte Mathematik.}
}
@book{Griebel.Knapek.Zumbusch:2007,
  author = {M. Griebel and S. Knapek and G. Zumbusch},
  title = {Numerical Simulation in Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications},
  publisher = {Springer},
  address = {Berlin, Heidelberg},
  year = {2007},
  series = {Texts in Computational Science and Engineering},
  volume = {5},
  note = {},
  annote = {editorial},
  amazon = {http://www.amazon.de/Numerical-Simulation-Molecular-Dynamics-Parallelization/dp/3540680942/ref=sr_1_6/028-3794171-7733364?ie=UTF8&s=books&qid=1182883588&sr=1-6},
  http = {http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173713766-0},
  abstract = {Particle models play an important role in many applications in physics, chemistry and biology. These can be studied on the computer with the help of molecular dynamics simulations. This book presents in detail the necessary numerical methods, the theoretical background and foundations and the techniques involved, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates such aspects as modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text goes on to offer detailed explanations of the different steps of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn step by step how to write programs capable of running successful experiments for molecular dynamics.}
}
@book{Griebel.Knapek.Zumbusch.ea:2004,
  author = {M. Griebel and S. Knapek and G. Zumbusch and A. Caglar},
  title = {{N}umerische {S}imulation in der {M}olek\"uldynamik.
		  {N}umerik, {A}lgorithmen, {P}arallelisierung,
		  {A}nwendungen},
  publisher = {Springer},
  address = {Berlin, Heidelberg},
  year = {2004},
  note = {},
  annote = {editorial},
  amazon = {http://www.amazon.de/exec/obidos/ASIN/3540418563/comicgeschrei-21},
  http = {http://www.ins.uni-bonn.de/info/md},
  abstract = {Das Lehrbuch führt in die wichtigsten Simulationstechniken
		  zur numerischen Behandlung der Newtonschen
		  Bewegungsgleichungen ein. Der Schwerpunkt liegt hierbei auf
		  der schnellen Auswertung kurz- und langreichweitiger Kräfte
		  mittels Linked Cell-, P3M-, Baum- und Multipol-Verfahren
		  sowie deren paralleler Implementierung und Lastbalancierung
		  auf Rechensystemen mit verteiltem Speicher. Die einzelnen
		  Kapitel bieten detaillierte Hinweise, um die Verfahren
		  Schritt für Schritt in ein Programmpaket umzusetzen.
		  Zahlreiche farbige Abbildungen enthalten
		  Simulationsergebnisse für eine Reihe von Anwendungen.}
}
@inproceedings{Caglar.Griebel.Schweitzer.ea:1999,
  author = {A. Caglar and M. Griebel and M. A. Schweitzer and G.
		  Zumbusch},
  title = {Dynamic Load-Balancing of Hierarchical Tree Algorithms on
		  a Cluster of Multiprocessor {PC}s and on the {C}ray
		  {T}3{E}},
  booktitle = {Proceedings 14th Supercomputer Conference, Mannheim},
  year = {1999},
  editor = {H. W. Meuer},
  series = {ISBN 3-932178-08-4},
  publisher = {Mateo},
  address = {Mannheim, Germany},
  note = {SuParCup '99 Award Winning Paper, also as SFB 256 report
		  27},
  annote = {refereed},
  ps = {http://wissrech.iam.uni-bonn.de/research/pub/zumbusch/suparcup99.ps.gz},
  pdf = {http://wissrech.iam.uni-bonn.de/research/pub/zumbusch/suparcup99.pdf},
  abstract = {The solution of many problems in science and engineering
		  is based on computational kernels for the numerical
		  treatment of partial differential equations (PDEs) or
		  N-body problems. Traditional solution methods however
		  reduce these to linear algebra or brute force algorithms on
		  structured data sets. Larger and larger simulations require
		  smarter algorithms to be tractable. Hierarchical tree
		  algorithms represent such a class, both for PDEs and for
		  N-body problems. However, their efficient parallelization
		  is not straightforward. Some difficulties can be removed,
		  if one can provide a fast dynamic load-balancing scheme to
		  cope with the tree variations of the unstructured data
		  sets. In this paper we propose a very cheap yet very
		  efficient load-balancing scheme for tree algorithms based
		  on space-filling curves. Furthermore we present the
		  Parnass2 cluster, on which such parallel codes perform
		  extremely well. The cluster consists of SMP PCs and a
		  Myrinet network at Gigabit/s speed configured with full
		  bisection bandwidth. It turns out that it does not only has
		  the obvious price/performance advantage, but also an
		  absolute performance, which is comparable to the latest
		  commercial Cray T3E.}
}
@inproceedings{Griebel.Zumbusch:2002,
  author = {M. Griebel and G. Zumbusch},
  title = {Hash based adaptive parallel multilevel methods with
		  space-filling curves},
  booktitle = {NIC Symposium 2001},
  year = {2002},
  editor = {Horst Rollnik and Dietrich Wolf},
  series = {NIC Series, ISBN 3-00-009055-X},
  publisher = {Forschungszentrum J\"ulich},
  address = {Germany},
  volume = {9},
  pages = {479--492},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/juelich01.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/juelich01.pdf},
  abstract = {The solution of partial differential equations on a
		  parallel computer usually follows the data parallel
		  paradigm. The grid is partitioned and mapped onto the
		  processors. In this paper a parallelisable and cheap method
		  based on space-filling curves is proposed. The partitioning
		  is embedded into the parallel solution algorithm using
		  multilevel iterative solvers and adaptive grid refinement.
		  Numerical experiments on two massively parallel computers
		  prove the efficiency of this approach. }
}
@book{Griebel.Zumbusch:2000,
  editor = {M. Griebel and G. Zumbusch},
  title = {Computing},
  publisher = {Springer},
  address = {Vienna, Austria},
  year = {2000},
  volume = {64(4)},
  annote = {editorial},
  note = {(guest editors) special issue multigrid methods},
  http = {http://link.springer.de/link/service/journals/00607/tocs/t0064004.htm},
  abstract = {In October 1998 the tenth workshop in a series of biannual
		  GAMM seminars on multigrid methods was held. Almost two
		  decades have passed since the first one, and the topics of
		  the seminars provide a good insight into the progress
		  during this period. The series began in the former GDR and
		  is nowadays organised in cooperation with the
		  GAMM-Committees for ``Discretization Methods in Solid
		  Mechanics'' and ``Efficient Numerical Methods for PDEs''.
		  As this was the tenth anniversary of the series, the rather
		  general title was chosen ``International GAMM-Workshop on
		  Multigrid Methods''...}
}
@inproceedings{Griebel.Zumbusch:1997,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Parnass: Porting gigabit-{LAN} components to a workstation
		  cluster},
  booktitle = {Proceedings of the 1st Workshop Cluster-Computing},
  pages = {101--124},
  year = {1997},
  editor = {W. Rehm},
  number = {CSR-97-05},
  series = {Chemnitzer Informatik Berichte},
  organization = {TU Chemnitz},
  address = {Chemnitz, Germany},
  note = {also as Techn. Report No 19, SFB 256, Univ. Bonn},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/cluster97.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/cluster97.pdf},
  abstract = {We will report on a cluster of workstations at our
		  department, called Parnass. It is based on different types
		  of MIPS processor workstations and servers, connected by a
		  Myrinet, a Gigabit per second switched LAN, and
		  additionally a Fast Ethernet. We have ported some low level
		  message passing libraries as well as MPI to the Myrinet. A
		  comparison of the performance of various communication
		  libraries on different networks will be presented.}
}
@inproceedings{Griebel.Zumbusch:1998,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Hash-Storage Techniques for Adaptive Multilevel Solvers
		  and their Domain Decomposition Parallelization},
  booktitle = {Proceedings of Domain Decomposition Methods 10, DD10
		  (1997)},
  pages = {271--278},
  year = {1998},
  editor = {J. Mandel and C. Farhat and X.-C. Cai},
  number = {218},
  series = {Contemporary Mathematics},
  publisher = {AMS},
  address = {Providence, Rhode Island},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/dd10.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/dd10.pdf},
  abstract = {Partial differential equations can be solved efficiently
		  by adaptive multigrid methods on a parallel computer. We
		  report on the concepts of hash-table storage techniques and
		  space-filling curves to set up such a code. The hash-table
		  storage requires substantial less amount of memory and is
		  easier to code than tree data structures used in
		  traditional adaptive multigrid codes, already for the
		  sequential case. The parallelization takes place by a
		  domain decomposition by space filling curves, which are
		  intimately connected to the hash table. The new data
		  structure simplifies the parallel version of the code
		  substantially and introduces a cheap way to solve the load
		  balancing and mapping problem....}
}
@inproceedings{Griebel.Zumbusch:1998*1,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Parallel multigrid in an adaptive {PDE} solver based on
		  hashing},
  booktitle = {Parallel Computing: Fundamentals, Applications and New
		  Directions},
  pages = {589--600},
  editor = {E. D'Hollander and G.R. Joubert and F.J. Peters and U.
		  Trottenberg},
  publisher = {Elsevier},
  series = {Advances in Parallel Computing},
  number = {12},
  address = {Amsterdam, The Netherlands},
  year = {1998},
  note = {Proceedings of ParCo 97, Bonn, Germany},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/parco97.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/parco97.pdf},
  abstract = {Partial differential equations can be solved efficiently
		  by adaptive multigrid methods on a parallel computer. We
		  report on the concept of hash-table storage techniques to
		  set up such a code. The code requires substantial less
		  amount of memory and is easier to code in the sequential
		  case. The parallelization takes place by a space filling
		  curve domain decomposition intimately connected to the hash
		  table. The new data structure simplifies the parallel
		  version of the code substantially way and introduces a
		  cheap way to solve the load balancing and mapping
		  problem.}
}
@article{Griebel.Zumbusch:1999,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Parallel Multigrid in an Adaptive {PDE} Solver based on
		  Hashing and Space-Filling Curves},
  journal = {Parallel Computing},
  publisher = {Elsevier},
  address = {Amsterdam, The Netherlands},
  year = {1999},
  volume = {25},
  pages = {827--843},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/parco98.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/parco98.pdf},
  abstract = {Partial differential equations can be solved efficiently
		  by adaptive multigrid methods on a parallel computer. We
		  report on the concept of hash-table storage techniques to
		  set up such a program. The code requires substantial less
		  amount of memory than implementations based on tree type
		  data structures and is easier to program in the sequential
		  case. The parallelization takes place by a space-filling
		  curve domain decomposition intimately connected to the hash
		  table. The new data structure simplifies the
		  parallelization of the code substantially and introduces a
		  cheap way to solve the load balancing and mapping problem.
		  We report on the main features of the method and give the
		  results of numerical experiments with the new parallel
		  solver on a cluster of 64 Pentium II/400MHz connected by a
		  Myrinet in a fat tree topology.}
}
@inproceedings{Griebel.Zumbusch:1999*1,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Adaptive Sparse Grids for Hyperbolic Conservation Laws},
  booktitle = {Hyperbolic Problems: Theory, Numerics, Applications. 7th
		  International Conference in Z\"{u}rich, February 1998},
  editor = {M. Fey and R. Jeltsch},
  volume = {1},
  pages = {411--422},
  series = {International Series of Numerical Mathematics 129},
  year = {1999},
  publisher = {Birkh\"{a}user},
  address = {Basel, Switzerland},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/hyp7.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/hyp7.pdf},
  abstract = {We report on numerical experiments using adaptive sparse
		  grid discretization techniques for the numerical solution
		  of scalar hyperbolic conservation laws. Sparse grids are an
		  efficient approximation method for functions. Compared to
		  regular, uniform grids of a mesh parameter $h$ contain
		  $h^{-d}$ points in $d$ dimensions, sparse grids require
		  only $h^{-1}|{\mathrm log}h|^{d-1}$ points due to a
		  truncated, tensor-product multi-scale basis representation.
		  \\ For the treatment of conservation laws two different
		  approaches are taken: First an explicit time-stepping
		  scheme based on central differences is introduced. Sparse
		  grids provide the representation of the solution at each
		  time step and reduce the number of unknowns. Further
		  reductions can be achieved with adaptive grid refinement
		  and coarsening in space. Second, an upwind type sparse grid
		  discretization in $d+1$ dimensional space-time is
		  constructed. The problem is discretized both in space and
		  in time, storing the solution at all time steps at once,
		  which would be too expensive with regular grids. In order
		  to deal with local features of the solution, adaptivity in
		  space-time is employed. This leads to local grid refinement
		  and local time-steps in a natural way.}
}
@article{Griebel.Zumbusch:2000*1,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Parallel Adaptive Subspace Correction Schemes with
		  Applications to Elasticity},
  journal = {Computer Methods in Applied Mechanics and Engineering},
  publisher = {Elsevier},
  address = {Amsterdam, The Netherlands},
  volume = {184},
  year = {2000},
  pages = {303--332},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/cmame.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/cmame.pdf},
  abstract = {In this paper, we give a survey on the three main aspects
		  of the efficient treatment of PDEs, i.e. adaptive
		  discretization, multilevel solution and parallelization. We
		  emphasize the abstract approach of subspace correction
		  schemes and summarize its convergence theory. Then, we give
		  the main features of each of the three distinct topics and
		  treat the historical background and modern developments.
		  Furthermore, we demonstrate how all three ingredients can
		  be put together to give an adaptive and parallel multilevel
		  approach for the solution of elliptic PDEs and especially
		  of linear elasticity problems. We report on numerical
		  experiments for the adaptive parallel multilevel solution
		  of some test problems, namely the Poisson equation and
		  Lam{\'e}'s equation. Here, we emphasize the parallel
		  efficiency of the adaptive code even for simple test
		  problems with little work to distribute, which is achieved
		  through hash storage techniques and space-filling curves.}
}
@article{Griebel.Zumbusch:2000*2,
  author = {M. Griebel and G. W. Zumbusch},
  title = {Preface},
  journal = {Computing},
  publisher = {Springer},
  address = {Vienna, Austria},
  year = {2000},
  volume = {64},
  number = {4},
  pages = {287},
  note = {(guest editors) special issue multigrid methods},
  annote = {editorial},
  http = {http://link.springer.de/link/service/journals/00607/tocs/t0064004.htm},
  abstract = {In October 1998 the tenth workshop in a series of biannual
		  GAMM seminars on multigrid methods was held. Almost two
		  decades have passed since the first one, and the topics of
		  the seminars provide a good insight into the progress
		  during this period. The series began in the former GDR and
		  is nowadays organised in cooperation with the
		  GAMM-Committees for ``Discretization Methods in Solid
		  Mechanics'' and ``Efficient Numerical Methods for PDEs''.
		  As this was the tenth anniversary of the series, the rather
		  general title was chosen ``International GAMM-Workshop on
		  Multigrid Methods''...}
}
@article{Hochmuth.Knapek.Zumbusch:2000,
  author = {R.~Hochmuth and S.~Knapek and G.~Zumbusch},
  title = {Tensor products of {S}obolev spaces and applications},
  journal = {submitted},
  year = {2000},
  note = {also as Technical Report 685, SFB 256, Univ.~Bonn},
  annote = {refereed},
  abstract = {In many cases the approximation of solutions to
		  variational problems involving isotropic Sobolev spaces has
		  a complexity which depends exponentially on the dimension.
		  However, if the solutions possess dominating mixed
		  derivatives one can find discretizations to the
		  corresponding variational problems with a lower complexity
		  -- sometimes even independent of the dimension. In order to
		  analyse these effects, we relate tensor products of Sobolev
		  spaces with spaces with dominating mixed derivatives. Based
		  on these considerations we construct families of finite
		  dimensional anisotropic approximation spaces which
		  generalize in particular sparse grids. The obtained
		  estimates demonstrate, in which cases a complexity
		  independent or nearly independent of the dimension can be
		  expected. Finally numerical experiments demonstrate the
		  usefulness of the suggested approximation spaces.},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/tensor.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/tensor.pdf}
}
@inproceedings{Korzen.Schriever.Ziener.ea:1996,
  author = {M. Korzen and R. Schriever and K.-U. Ziener and O. Paetsch
		  and G. W. Zumbusch},
  title = {Real-Time 3-D Visualization of Surface Temperature Fields
		  Measured by Thermocouples on Steel Structures in Fire
		  Engineering},
  booktitle = {Proceedings of International Symposium Local Strain and
		  Temperature Measurements in Non-Uniform Fields at Elevated
		  Temperatures},
  pages = {253--262},
  year = {1996},
  editor = {J. Ziebs and J. Bressers and H. Frenz and D. R. Hayhurst
		  and H. Klingelh\"{o}ffer and S. Forest},
  publisher = {Woodhead Pub},
  address = {Camridge, UK},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/proceedings_2.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/proceedings_2.pdf},
  abstract = { The aim of this paper is to present some advanced
		  techniques for monitoring thermocouples in the field of
		  fire engineering. In a fire test structural elements like
		  columns, beams or slabs, which are insulated by a fire
		  protection material, are subjected to mechanical as well as
		  thermal loadings. Whereas the mechanical loading is
		  constant the mean temperature in the furnace varies - due
		  to oil or gas burners - nearly monotonically as a function
		  of time within 90 minutes between room temperature and 1000
		  $^0C$. New technical standards as well as research purposes
		  require the monitoring of 30 to 60 thermocouples and more.
		  Although versatile computer based data acquisition systems
		  including necessary signal condition front-ends exist for
		  handling such an amount of data at any required rate, there
		  is a lack in representing these data during the test in
		  their geometrical context, i.e. as a property of the steel
		  surface. The method, which is proposed by the authors, uses
		  some recent developments in computer graphics and numerical
		  mathematics. By this method the monitoring of the
		  thermocouples is understood as a representation of a
		  time-dependent 1-dimensional field, which is based on
		  discrete measured values on a curved surface in 3-D space.
		  For this solution CAD and data visualization tools are
		  under testing, which are originally designed for other
		  purposes. In praxis a geometry file has to be created
		  before the fire test for the structural element under
		  consideration including the information on the position of
		  the thermocouples. This file is used as an appropriate
		  triangulation of the surface of the specimen. The
		  corresponding grid together with the actual temperature
		  readings are the basis for the real time visualization of
		  the temperature field by continuous colors or iso-lines.}
}
@incollection{Mardal.Zumbusch.Langtangen:2003,
  author = {K.-A. Mardal and G. W. Zumbusch and H. P. Langtangen},
  title = {Software Tools for Multigrid Methods},
  booktitle = {Advanced Topics in Computational Partial Differential
		  Equations},
  pages = {97--152},
  publisher = {Springer},
  address = {Berlin, Germany},
  year = {2003},
  editor = {H. P. Langtangen and A. Tveito},
  volume = {33},
  series = {Lecture Notes in Computational Science and Engineering},
  chapter = {3},
  annote = {unrefereed},
  abstract = {}
}
@inproceedings{Schiekofer.Zumbusch:1998,
  author = {T. Schiekofer and G. W. Zumbusch},
  title = {Software Concepts of a Sparse Grid Finite Difference
		  Code},
  booktitle = {Proceedings of the 14th GAMM-Seminar Kiel on Concepts of
		  Numerical Software},
  year = {1998},
  editor = {W. Hackbusch and G. Wittum},
  series = {Notes on Numerical Fluid Mechanics},
  publisher = {Vieweg},
  address = {Wiesbaden, Germany},
  pages = {11},
  note = {submitted},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/kiel98.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/kiel98.pdf},
  abstract = {Sparse grids provide an efficient representation of
		  discrete solutions of PDEs and are mainly based on specific
		  tensor products of one-dimensional hierarchical basis
		  functions. They easily allow for adaptive refinement and
		  compression. We present special finite difference operators
		  on sparse grids that possess nearly the same properties as
		  full grid operators. Using this approach, partial
		  differential equations of second order can be discretized
		  straightforwardly. We report on an adaptive finite
		  difference research code implementing this on sparse grids.
		  It is structured in an object oriented way. It is based on
		  hash storage techniques as a new data structure for sparse
		  grids. Due to the direct access of arbitrary data
		  traditional tree like structures can be avoided. The above
		  techniques are employed for the solution of parabolic
		  problems. We present a simple space-time discretization.
		  Furthermore a time-stepping procedure for the solution of
		  the Navier Stokes equations in 3D is presented. Here we
		  discretize by a projection method and obtain Poisson
		  problems and convection-diffusion problems.}
}
@techreport{Schutte.Dinand.Zumbusch.ea:1995,
  author = {Ch. Sch\"{u}tte and M. Dinand and G. W. Zumbusch and R.
		  Brinkmann},
  title = {Dynamics of {E}rbium-doped Waveguide Lasers: Modelling,
		  Reliable Simulation, and Comparison with Experiments},
  institution = {Konrad-Zuse-Zentrum},
  address = {Berlin, Germany},
  year = {1995},
  number = {SC-95-19},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-19.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-19.pdf},
  abstract = { A theoretical investigation of the dynamic properties of
		  integrated optical Erbium doped waveguide lasers is
		  presented. It includes the construction of a physical model
		  and of numerical techniques which allow reliable
		  simulations of the dynamical behaviour of the laser signal
		  depending on essential parameters of the laser device and
		  on its external, time-dependent pump radiation. Therefore,
		  a physical theory is developed which describes the
		  propagation of light and its interaction with the active
		  substrate in the laser cavity. This is realized in two
		  steps. First, a fundamental model based on Maxwell's
		  equations and on rate equations for the transitions in the
		  active medium is constructed. Since this turns out to
		  prohibit reliable simulations, it is, in a second step,
		  reformulated via averaging in time and space which
		  suppresses the fluctuations on the fastest time scales but
		  represents them correctly. For this reduced model reliable
		  and efficient simulation techniques using adaptive control
		  schemes are designed and implemented. We apply the linear
		  implicit Euler discretization with extrapolation in time
		  and a multilevel quadrature scheme in space. Finally the
		  model is justified in comparison with experimental
		  observations in four cases of technological relevance. }
}
@inproceedings{Schweitzer.Zumbusch.Griebel:1999,
  author = {M. A. Schweitzer and G. W. Zumbusch and M. Griebel},
  title = {Parnass2: {A} Cluster of Dual-Processor {PC}s},
  booktitle = {Proceedings of the 2nd Workshop Cluster-Computing,
		  Karlsruhe},
  year = {1999},
  editor = {W. Rehm and T. Ungerer},
  number = {CSR-99-02},
  series = {Chemnitzer Informatik Berichte},
  organization = {TU Chemnitz},
  address = {Chemnitz, Germany},
  pages = {45--54},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/cluster99.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/schweitz/cluster99.pdf},
  abstract = {We report on a cluster with 96 CPUs (48 Dual-Processor PCs
		  running Linux 2.1.127) at our department, called Parnass2.
		  The computing nodes are connected by a Myrinet, a Gigabit
		  per second switched LAN, and additionally by a
		  Fast-Ethernet. A comparison of different message passing
		  (MPI) libraries for the Myrinet is given. Furthermore, we
		  present the performance results of Parnass2 for some of the
		  parallel codes developed at our department, namely a sparse
		  grid code for PDEs, a particle code for molecular dynamics,
		  a finite difference code for the Navier-Stokes equation,
		  and a parallel adaptive finite element / finite difference
		  multi-grid code. We compare these results with the
		  performance of these codes running on a Cray T3E-1200, a
		  Cray T3E-600, a SGI Origin 200/2000 and Parnass
		  \cite{MGriebel:GWZumbusch:1997a}, a cluster of SGI O2
		  workstations.}
}
@article{Zumbusch:2001,
  author = {G. Zumbusch},
  title = {Load Balancing for Adaptively Refined Grids},
  year = {2002},
  journal = {Proc. Appl. Math. Mech.},
  number = {1},
  pages = {534--537},
  note = {also as report 722 SFB 256, University Bonn},
  annote = {unrefereed},
  abstract = {The solution of partial differential equations on a
		  parallel computer is usually done by a data parallel
		  approach. The grid is partitioned and mapped onto the
		  processors. However, partitioning of unstructured meshes
		  and adaptively refined meshes in general is an $NP$-hard
		  problem and heuristics are needed. In this paper a
		  parallelisable and cheap method based on space-filling
		  curves is analysed. Quasi-optimal estimates are derived for
		  partitions of adaptively refined grids.},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/gamm01.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/gamm01.pdf}
}
@inproceedings{Zumbusch:1999,
  author = {G. Zumbusch},
  title = {Dynamic loadbalancing in a lightweight adaptive parallel
		  multigrid {PDE} solver},
  booktitle = {Proceedings of 9th SIAM Conference on Parallel Processing
		  for Scientific Computing (PP 99), San Antonio, Texas},
  year = {1999},
  editor = {B. Hendrickson and K. Yelick and C. Bischof and I. Duff
		  and A. Edelman and G. Geist and M. Heath and M. Heroux and
		  C. Koelbel and R. Schrieber and R. Sinovec and M. Wheeler},
  publisher = {SIAM},
  address = {Philadelphia, PA},
  series = {ISBN 0-89871-435-4},
  pages = {10},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/pp99.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/pp99.pdf},
  abstract = {A parallel version of an adaptive multigrid solver for
		  partial differential equations is considered. The main
		  emphasis is put on the load balancing algorithm to
		  distribute the adaptive grids at runtime. The background
		  and some applications of space-filling curves are
		  discussed, which are later on used as the basic principle
		  of the load-balancing heuristic. A tight integration of
		  space-filling curves as a memory addressing scheme into the
		  numerical algorithm is proposed. Some experiments on a
		  cluster of PCs demonstrates the parallel efficiency and
		  scalability of the approach. }
}
@book{Zumbusch:2003,
  author = {G. Zumbusch},
  title = {Parallel Multilevel Methods. Adaptive Mesh Refinement and
		  Loadbalancing},
  publisher = {Teubner},
  year = {2003},
  amazon = {http://www.amazon.de/Parallel-Multilevel-Methods-Gerhard-Zumbusch/dp/3519004518/ref=sr_1_3/028-3794171-7733364?ie=UTF8&s=books&qid=1182883588&sr=1-3},
  annote = {editorial},
  abstract = {Main aspects of the efficient treatment of partial
		  differential equations are discretisation,
		  multilevel/multigrid solution and parallelisation. These
		  distinct topics are covered from the historical background
		  to modern developments. It is demonstrated how the
		  ingredients can be put together to give an adaptive and
		  parallel multilevel approach for the solution of elliptic
		  boundary value problems. Error estimators and adaptive grid
		  refinement techniques for ordinary and for sparse grid
		  discretisations are presented. Different types of additive
		  and multiplicative multilevel solvers are discussed with
		  respect to parallel implementation and application to
		  adaptive refined grids. Efficiency issues are treated both
		  for the sequential multilevel methods and for the parallel
		  version by hash table storage techniques. Finally,
		  space-filling curve enumeration for parallel load balancing
		  and processor cache efficiency are discussed.},
  series = {Advances in Numerical Mathematics},
  http = {http://cse.mathe.uni-jena.de/pub/zumbusch/teubner03.htm}
}
@techreport{Zumbusch:1991,
  author = {G. W. Zumbusch},
  title = {Adaptive parallele {M}ultilevel-{M}ethoden zur
		  {L}\"{o}sung elliptischer {R}andwertprobleme},
  institution = {SFB 342, TU M\"{u}nchen},
  address = {Munich, Germany},
  year = {1991},
  number = {342/19/91 A},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/p1.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/p1.pdf},
  abstract = { Multilevel Methoden sind die zur Zeit effizientesten
		  Verfahren zur L\"{o}sung gro{\ss}er linearer
		  Gleichungssysteme, die aus der Diskretisierung elliptischer
		  Randwertprobleme entstehen. Der Aufwand, mit
		  Mehrgitterverfahren oder auch mit multilevel
		  vorkonditionierten Verfahren der konjugierten Gradienten
		  (CG) im symmetrisch positiv definiten Fall ein
		  Gleichungssystem bis auf Diskretisierungsgenauigkeit zu
		  l\"{o}sen, ist unter geeigneten Voraus- setzungen
		  proportional zur Zahl der Unbekannten oder nur um einen
		  logarithmischen Term h\"{o}her. ... \\ Die
		  Ausf\"{u}hrungsgeschwindigkeit kann durch adaptive
		  Verfeinerungs- techniken, die die Zahl der notwendigen
		  Unbekannten reduzieren, erh\"{o}ht werden. Dazu existieren
		  vollst\"{a}ndige Programmpakete, wie PLTMG [Bank] und
		  Kaskade [Leinen], [Deuflhard, Leinen, Yserentant], die die
		  Ordnung des eingebauten iterativen L\"{o}sers durch
		  Gitterverwaltung, Verfeinerung und Gittermanipulation nicht
		  verschlechtern. Die Ordnung des L\"{o}sungsverfahrens kann
		  nur durch parallele Ausf\"{u}hrung gesenkt werden. In
		  Hinblick auf sehr gro{\ss}e lineare Gleichungssysteme, wie
		  sie insbesondere auch durch Randwertprobleme in drei
		  Raumdimensionen entstehen, liegt es nahe, beide Techniken
		  zu verbinden. Bei der Lastverteilung adaptiv, also
		  dynamisch erzeugter Strukturen, k\"{o}nnen allerdings nicht
		  mehr alle Vorraussetzungen an die
		  Finiten-Elemente-R\"{a}ume und alle Algorithmen zur
		  Gittermanipulation vom sequentiellen Programm
		  \"{u}bernommen werden. Existierende Ans\"{a}tze, wie [Fox &
		  Otto], [Berger & Bokhari] und [Bastian] f\"{u}hren zu
		  Verfahren, deren Ordnung h\"{o}her als die des iterativen
		  L\"{o}sers ist, und nutzen die Multilevel-Struktur der
		  Gitter nicht aus. Ans\"{a}tze zur Parallelisierung von
		  Standard-Mehrgitterverfahren wie [Briggs, Hart, McCormick &
		  Quinlan] oder von adaptiven Mehrgitterverfahren wie
		  [Mierendorff] k\"{o}nnen in dieser Form nicht auf adaptive
		  Verfahren angewendet werden, obwohl sie f\"{u}r regul\"{a}r
		  verfeinerte Gitter optimale Ergebnisse liefern. ... \\ Wir
		  werden im folgenden Parallelrechner mit verteiltem Speicher
		  und Message-Passing-Kommunikation und Parallelrechner mit
		  gemeinsamem Speicher und Semaphor-Synchronisation
		  verwenden, um ein multilevel- vorkonditioniertes
		  CG-Verfahren so zu implementieren, da{\ss} die
		  Eigenschaften des sequentiellen Programms, soweit
		  m\"{o}glich, erhalten bleiben, und gleichzeitig eine
		  effiziente Parallelisierung erreicht wird. }
}
@mastersthesis{Zumbusch:1992,
  author = {G. W. Zumbusch},
  title = {Adaptive parallele {M}ultilevel-{M}ethoden zur
		  {L}\"{o}sung elliptischer {R}andwertprobleme},
  school = {Mathematisches Institut, TU M\"{u}nchen},
  address = {Munich, Germany},
  year = {1992},
  type = {Diplomarbeit},
  annote = {thesis},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/d1.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/d1.pdf},
  abstract = {Multilevel Methoden sind die zur Zeit effizientesten
		  Verfahren zur L\"{o}sung gro{\ss}er symmetrischer
		  schwachbesetzter linearer Gleichungssysteme, die aus der
		  Diskretisierung selbstadjungierter elliptischer
		  Randwertprobleme mit Finiten-Elementen entstehen. Im
		  folgenden wird die Parallelisierung eines von Bramble,
		  Pasciak und Xu vorgeschlagenen vorkonditionierten
		  Verfahrens der konjugierten Gradienten, eingebettet in ein
		  adaptives Finite-Elemente-Programm wie etwa Kaskade,
		  diskutiert. Dabei m\"{u}ssen zur effizienten Lastverteilung
		  zus\"{a}tzliche Forderungen an Triangulierungen,
		  Finite-Elemente-R\"{a}ume und
		  Gittermanipulationsalgorithmen gestellt werden. Es werden
		  Standardverfahren der Lastverteilung mit einem neuen
		  Aufteilungsverfahren, das auf einem statistischen Ansatz
		  beruht, verglichen. Mit einer hier vorgestellten gemischten
		  Strategie der Aufteilung von Gitterpunkten und Dreiecken
		  kann ein Gesamtverfahren von optimaler Ordnung erreicht
		  werden. Die experimentellen Ergebnisse auf einigen
		  Parallelrechnern zeigen eine hohe \"{U}bereinstimmung mit
		  einem hergeleiteten Kostenfunktional und eine ideale
		  Parallelisierbarkeit des Verfahrens. Unterschiede zu
		  anderen bekannten Multilevelverfahren werden in den
		  einzelnen Abschnitten herausgestellt.}
}
@techreport{Zumbusch:1993,
  author = {G. W. Zumbusch},
  title = {Symmetric Hierarchical Polynomials for the h-p-Version of
		  Finite Elements},
  institution = {Konrad-Zuse-Zentrum},
  address = {Berlin, Germany},
  year = {1993},
  number = {SC-93-32},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-93-32.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-93-32.pdf},
  abstract = {Adaptive numerical methods using the $h$-$p$-version of
		  finite elements require special kinds of shape functions.
		  Desirable properties of them are symmetry, hierarchy and
		  simple coupling. In a first step it is demonstrated that
		  for standard polynomial vector spaces not all of these
		  features can be obtained simultaneously. However, this is
		  possible if these spaces are extended. Thus a new class of
		  polynomial shape functions is derived, which is well-suited
		  for the $p$- and $h$-$p$-version of finite elements on
		  unstructured simplices. The construction is completed by
		  minimizing the condition numbers of the arising finite
		  element matrices. The new shape functions are compared with
		  standard functions widely used in the literature.}
}
@techreport{Zumbusch:1994,
  author = {G. W. Zumbusch},
  title = {Visualizing Functions of the h-p-version of finite
		  elements},
  institution = {Konrad-Zuse-Zentrum},
  address = {Berlin, Germany},
  year = {1994},
  number = {TR-94-05},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/TR-94-05.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/TR-94-05.pdf},
  abstract = {Results from finite-element-calculations are usually
		  visualized by colored surface- and contour-line-plots or
		  polygonal patches or simply displaced lines and grids. In
		  computer graphics however more advanced techniques like
		  texture-mapping and NURBS are well established and there
		  exist efficient algorithms and implementations. We show
		  that these techniques are not only easy to use, but form a
		  very natural and efficient approach for visualization of
		  higher order finite-element's solutions like in $p$- and
		  $h$-$p$-version. Texture-mapping is useful for displaying
		  vector-valued data, too.}
}
@inproceedings{Zumbusch:1995,
  author = {G. W. Zumbusch},
  title = {Adaptive h-p approximation procedures, graded meshes and
		  anisotropic refinement for Numerical Quadrature},
  booktitle = {Proceedings of The First European Conference on Numerical
		  Mathematics and Advanced Applications, ENUMATH 95},
  editor = {F. Brezzi and J. Periaux and R. Glowinski and R. Rannacher
		  and Yu. Kuznetsov},
  year = {1995},
  note = {accepted, also as report SC-95-24 ZIB, Berlin},
  pages = {12},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-24.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-24.pdf},
  abstract = {A set of adaptive algorithms for quadrature on
		  multi-dimensional polyhedral domains is presented. Several
		  kinds of refinement are discussed, covering local
		  improvement of quadrature order and splitting the domain
		  into sub-domains, resulting in isotropic, graded or
		  anisotropic grids. The algorithms are pure local heuristics
		  using no a priori knowledge or tuning parameters. This
		  approach was motivated by results from finite element
		  theory for optimal approximation results. Numerical
		  experiments show the optimality of pure local greedy-like
		  algorithms for singularity-type functions typically
		  occurring in finite element computations.}
}
@phdthesis{Zumbusch:2001*1,
  author = {G. W. Zumbusch},
  title = {Adaptive Parallel Multilevel Methods for Partial
		  Differential Equations},
  school = {Universit\"at Bonn},
  year = {2001},
  type = {Habilitation},
  annote = {thesis},
  abstract = {In this text we propose a space-filling curve enumeration
		  scheme for the load balancing problem. It is based on the
		  principles of self-similarity and scaling invariance. It
		  provides even multilevel locality, i.e. as much locality on
		  each scale as possible. We introduce the space-filling
		  curve schemes and prove some of the properties of the
		  partitions. The scheme is cheap, deterministic,
		  incremental, can be parallelised and provides acceptable
		  partitions. However, even more striking, it seems to be one
		  of the few partitioning methods where quasi-optimal
		  estimates can be shown. We are able to derive sharp
		  estimates both on the partition and on the multilevel
		  algorithms on the partition, which is more than is known
		  about competing graph partitioning load balancing methods
		  so far.
		  
		  Furthermore, we give a survey of the three main aspects of
		  the efficient treatment of PDEs, that is, discretisation,
		  multilevel solution and parallelisation. We will treat the
		  main features of each of the three distinct topics and
		  cover the historical background and modern developments. We
		  demonstrate how all three ingredients can be put together
		  to give an adaptive and parallel multilevel approach for
		  the solution of PDEs. Error estimators and adaptive grid
		  refinement techniques for ordinary and for sparse grid
		  discretisations are presented. Different types of additive
		  and multiplicative multilevel solvers are discussed with
		  respect to parallel implementation and application to
		  adaptive refined grids. Efficiency issues are treated both
		  for the sequential multilevel methods and for the parallel
		  version by hash table storage techniques. Furthermore,
		  space-filling curve enumeration for parallel load balancing
		  and processor cache efficiency are discussed. We will apply
		  the method to elliptic boundary value problems.
		  
		  We are able to derive estimates for the quality of the
		  partitions by space-filling curves and the load balancing
		  of the numerical algorithms on the grids. Even for adaptive
		  grid refinement within certain ranges we are able to prove
		  that the partitions are quasi-optimal, i.e. the cut sizes
		  of the dual graph are only a constant factor away from
		  optimum independent of the mesh size. Hence we obtain
		  asymptotic optimality of the parallel algorithms. This
		  seems to be remarkable in comparison to graph based
		  heuristics, where little is known about the quality.
		  
		  Furthermore we were able to demonstrate the performance of
		  the method on a range of the world's largest parallel
		  computers, namely ASCI Blue Pacific and a prototype Cray
		  T3E (now presumably at NSA), which are each larger than any
		  non-US system. We complement this data by simulations run
		  on Parnass2, which was the first non-US self-made cluster
		  in the list of the world's largest 500 computers (TOP500).
		  We also demonstrate that this cluster is able to outperform
		  many other commercial parallel computers on a per processor
		  base. }
}
@phdthesis{Zumbusch:1995*1,
  author = {G. W. Zumbusch},
  title = {Simultanous h-p Adaptation in Multilevel Finite Elements},
  school = {Fachbereich Mathematik und Informatik, FU Berlin},
  year = {1995},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/diss.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/diss.pdf},
  type = {Doktorarbeit},
  annote = {thesis},
  abstract = {An important tool in engineering is the finite element
		  method.... The combination of both methods, the $h$--$p$
		  version, supplies the pre-asym\-ptotic exponentially
		  convergent $p$--version continuously with properly adapted
		  grids. Hence it achieves the superior exponential
		  convergence asymptotically, too, instead of algebraic
		  convergence of its ingredients the $h$--version and the
		  $p$--version. Although the first theoretical results
		  claiming these convergence rates are quite classic, the
		  number of codes using the $h$--$p$--version of finite
		  elements is still rather limited. Reasons for that are the
		  pure implementational complexity and the details, in
		  conjunction with the rumor of engineers' low precision
		  requirements. But the major reason is the lack of a robust
		  (self-) adaptive control delivering the desired exponential
		  convergence. ... \\ In the this thesis we present some
		  steps towards an efficient implementation of the
		  theoretically known exponential convergence. As it turns
		  out, an efficient implementation requires additional
		  theoretical considerations, which play a major role there
		  as well. This includes both the fully automatic
		  $h$--$p$--version and as a subset the $p$--version on
		  suitable grids. We present some details concerning our
		  approach implementing an adaptive $h$--$p$--version based
		  on an adaptive multilevel $h$--version code named {\sc
		  Kaskade}. This software package uses unstructured grids of
		  triangles in two dimensions and tetrahedra in three
		  dimensions.}
}
@techreport{Zumbusch:1996,
  author = {G. W. Zumbusch},
  title = {Multigrid methods in {D}iffpack},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  number = {STF42 F96016},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/mg.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/mg.pdf},
  abstract = {The report gives an introduction to the multigrid
		  iterative solvers in Diffpack. It is meant as a tutorial
		  for the use of iterative solvers, preconditioners and
		  nonlinear solvers based on multigrid methods. The first
		  steps towards this efficient equation solvers are guided by
		  a couple of examples and exercises. Since multigrid is a
		  recipe to construct solution algorithms rather than
		  black-box algorithms itself, there is lots of freedom for
		  the user to tailor the actual solver. Reflecting this fact
		  there are lots of possibilities to use the appropriate
		  classes in Diffpack. Hence there is much advice needed not
		  to get started, but also to use the methods efficiently.
		  The exercises are meant to give some experience needed for
		  applications and questions not covered in this introductory
		  report.}
}
@techreport{Zumbusch:1996*1,
  author = {G. W. Zumbusch},
  title = {Overlapping Domain Decomposition Methods in {D}iffpack},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/ddo.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/ddo.pdf},
  abstract = {The report gives an introduction to the overlapping domain
		  decomposition solvers of Schwarz type in Diffpack. It is
		  meant as a tutorial for the use of iterative solvers,
		  preconditioners and nonlinear solvers based on overlapping
		  Schwarz methods for partial differential equations.
		  Additive Schwarz methods serve as a standard method for
		  solving equation systems on parallel computers. They are
		  also useful for computations on complicated domains
		  constructed from simple domains where efficient equations
		  solvers are available. We provide an introduction to the
		  implementation and use of such methods in Diffpack. The
		  first steps are guided by a couple of examples and
		  exercises. We also want to refer to an accompanied tutorial
		  on multigrid methods in Diffpack, which methods and codes
		  are quite related.}
}
@techreport{Zumbusch:1996*2,
  author = {G. W. Zumbusch},
  title = {Schur Complement Domain Decomposition Methods in
		  {D}iffpack},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/ddn.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/ddn.pdf},
  abstract = {The report gives an introduction to the Schur complement
		  domain decomposition solvers in Diffpack. It is meant as a
		  tutorial for the use of iterative solution methods of
		  equation systems arising in the discretization of partial
		  differential equations. Schur complement iterative solvers
		  are discussed, without and with preconditioners. They are
		  also referred to as iterative sub-structuring methods or
		  non-overlapping domain decomposition methods. Domain
		  decomposition methods are well suited and efficient
		  equation solvers on parallel computers. Schur complement
		  methods are also advantageous if there are abrupt changes
		  in the coefficients of the differential operator due to
		  abrupt changes in material properties. We provide an
		  introduction to the implementation and use of such methods
		  in Diffpack. We cover the basic Schur complement method
		  along with preconditioners of eigen-decomposition, BPS,
		  wire-basket and Neumann-Neumann type (with coarse grid).
		  The first steps are guided by a couple of examples and
		  exercises. We also want to refer to the related tutorials
		  on overlapping domain decomposition \cite{GWZumbusch:1996b}
		  and on multigrid \cite{GWZumbusch:1996a} methods in
		  Diffpack.}
}
@techreport{Zumbusch:1996*3,
  author = {G. W. Zumbusch},
  title = {Multigrid Applied to Different Partial Differential
		  Operators},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgOp.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgOp.pdf},
  abstract = {The report is a continuation of an introductory report on
		  the multigrid iterative solvers in Diffpack. We consider
		  the solution of systems of equations as arising in linear
		  elasticity, non-symmetric equations as in
		  convection-diffusion problems, anisotropic operators and
		  bad conditioned equations as for jumping coefficients
		  problems. In the introductory report only the Laplacian and
		  smooth coefficients were treated. The first steps are
		  guided by a couple of examples and exercises.}
}
@techreport{Zumbusch:1996*4,
  author = {G. W. Zumbusch},
  title = {Multigrid on Different Grids},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgGrid.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgGrid.pdf},
  abstract = {The report is a continuation of an introductory report on
		  the multigrid iterative solvers in Diffpack. We consider
		  the solution of equation systems arizing in the finite
		  element discretization of partial differential equations on
		  different grids. In the introductory report only uniform
		  partitions of the unit square and unit cube were treated.
		  Now we consider also multigrid for mapped elements, grids
		  generated by the meshing of super elements and unstructured
		  (and non nested) grids. The first steps are guided by a
		  couple of examples and exercises.}
}
@techreport{Zumbusch:1996*5,
  author = {G. W. Zumbusch},
  title = {Multigrid for Different Finite Difference Equations},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgFdOp.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgFdOp.pdf},
  abstract = {The report is a continuation of an introductory report on
		  the multigrid iterative solvers for finite differences in
		  Diffpack. We consider the solution of partial differential
		  equations discretized by finite differences. We consider
		  varying coefficient and anisotropic operators and a variety
		  of strategies for the convection-diffusion equation and the
		  biharmonic equation. In the introductory report only the
		  Laplacian was treated. We also discuss different multigrid
		  restriction and prolongation operators arising in some
		  special multigrid versions. The first steps are guided by a
		  couple of examples.}
}
@techreport{Zumbusch:1996*6,
  author = {G. W. Zumbusch},
  title = {Multigrid Methods for Finite Differences},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgFdm.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/mgFdm.pdf},
  abstract = {The report serves as an alternative introductory report on
		  the multigrid iterative solvers in Diffpack using finite
		  differences instead of finite elements covered previously.
		  We consider the solution of elliptic partial differential
		  equations on different domains. We solve the resulting
		  linear equation systems with a multigrid iteration or a
		  Krylov iteration with a multigrid preconditioner. The
		  multigrid restriction and prolongation are also implemented
		  using finite ``difference'' type stencils. The first steps
		  are guided by a couple of examples and exercises.}
}
@book{Zumbusch:1996*7,
  author = {G. W. Zumbusch},
  title = {Simultanous h-p Adaptation in Multilevel Finite Elements},
  publisher = {Shaker},
  address = {Aachen, Germany},
  year = {1996},
  series = {ISBN 3-8265-1136-0},
  annote = {editorial},
  note = {Informatik, FU Berlin, 1995},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/diss.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/diss.pdf},
  abstract = {An important tool in engineering is the finite element
		  method.... The combination of both methods, the $h$--$p$
		  version, supplies the pre-asym\-ptotic exponentially
		  convergent $p$--version continuously with properly adapted
		  grids. Hence it achieves the superior exponential
		  convergence asymptotically, too, instead of algebraic
		  convergence of its ingredients the $h$--version and the
		  $p$--version. Although the first theoretical results
		  claiming these convergence rates are quite classic, the
		  number of codes using the $h$--$p$--version of finite
		  elements is still rather limited. Reasons for that are the
		  pure implementational complexity and the details, in
		  conjunction with the rumor of engineers' low precision
		  requirements. But the major reason is the lack of a robust
		  (self-) adaptive control delivering the desired exponential
		  convergence. ... \\ In the this thesis we present some
		  steps towards an efficient implementation of the
		  theoretically known exponential convergence. As it turns
		  out, an efficient implementation requires additional
		  theoretical considerations, which play a major role there
		  as well. This includes both the fully automatic
		  $h$--$p$--version and as a subset the $p$--version on
		  suitable grids. We present some details concerning our
		  approach implementing an adaptive $h$--$p$--version based
		  on an adaptive multilevel $h$--version code named {\sc
		  Kaskade}. This software package uses unstructured grids of
		  triangles in two dimensions and tetrahedra in three
		  dimensions.}
}
@article{Zumbusch:1996*8,
  author = {G. W. Zumbusch},
  title = {Symmetric Hierarchical Polynomials and the Adaptive
		  h-p-Version},
  journal = {Houston Journal of Mathematics},
  address = {Houston, Texas},
  year = {1996},
  pages = {529--540},
  editor = {A.V. Ilin and L. R. Scott},
  note = {Proceedings of the Third International Conference on
		  Spectral and High Order Methods, ICOSAHOM'95, also as
		  report SC-95-18 ZIB, Berlin},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-18.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/SC-95-18.pdf},
  abstract = {The $h$-$p$-version of finite-elements delivers a
		  sub-exponential convergence in the energy norm. A step
		  towards a full adaptive implementation is taken in the
		  context of unstructured meshes of simplices with variable
		  order $p$ in space. Both assumptions lead to desirable
		  properties of shape functions like symmetry, $p$-hierarchy
		  and simple coupling of elements.\\ In a first step it is
		  demonstrated that for standard polynomial vector spaces on
		  simplices not all of these features can be obtained
		  simultaneously. However, this is possible if these spaces
		  are slightly extended or reduced. Thus a new class of
		  polynomial shape functions is derived, which are especially
		  well suited for three dimensional tetrahedra.\\ The
		  construction is completed by directly minimizing the
		  condition numbers of the arising preconditioned local
		  finite element matrices. The preconditioner is based on
		  two-step domain decomposition techniques using a multigrid
		  solver for the global linear problem $p=1$ and direct
		  solvers for local higher order problems.\\ Some numerical
		  results concerning an adaptive (feedback) version of
		  $h$-$p$ finite elements are presented.}
}
@inproceedings{Zumbusch:1999*1,
  author = {G. W. Zumbusch},
  title = {A Parallel Adaptive Multigrid Method},
  booktitle = {Proceedings of the 15th GAMM-Seminar Kiel on Numerical
		  Techniques for Composite Materials},
  year = {1999},
  editor = {W. Hackbusch and S. Sauter},
  series = {Notes on Numerical Fluid Mechanics},
  publisher = {Vieweg},
  address = {Wiesbaden, Germany},
  note = {submitted},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/kiel99.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/kiel99.pdf},
  abstract = {A parallel version of an adaptive multigrid solver for
		  elliptic partial differential equations is described. It
		  operates on a finite difference discretization on quad-tree
		  and oct-tree meshes, which are obtained by adaptive mesh
		  refinement. A fast parallel load balancing strategy for the
		  parallel multigrid equation solver is proposed that is
		  defined by a space-filling Hilbert curve and is applicable
		  to arbitrary shaped domains. Some numerical experiments
		  demonstrate the parallel efficiency and scalability of the
		  approach.}
}
@incollection{Zumbusch:2000,
  author = {G. W. Zumbusch},
  title = {A Sparse Grid {PDE} Solver},
  booktitle = {Advances in Software Tools for Scientific Computing},
  pages = {133--177},
  publisher = {Springer},
  address = {Berlin, Germany},
  year = {2000},
  editor = {H. P. Langtangen and A. M. Bruaset and E. Quak},
  volume = {10},
  series = {Lecture Notes in Computational Science and Engineering},
  chapter = {4},
  note = {(Proceedings SciTools '98)},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/scitools98.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/scitools98.pdf},
  zmath = {http://www.emis.de/cgi-bin/zmen/ZMATH/en/zmath.html?first=1&maxdocs=20&type=html&an=943.65111&format=complete},
  abstract = {Sparse grids are an efficient approximation method for
		  functions, especially in higher dimensions $d \ge 3$.
		  Compared to regular, uniform grids of a mesh parameter $h$,
		  which contain $h^{-d}$ points in $d$ dimensions, sparse
		  grids require only $h^{-1}|\log h|^{d-1}$ points due to a
		  truncated, tensor-product multi-scale basis representation.
		  The purpose of this paper is to survey some activities for
		  the solution of partial differential equations with methods
		  based sparse grid. Furthermore some aspects of sparse grids
		  are discussed such as adaptive grid refinement, parallel
		  computing, a space-time discretization scheme and the
		  structure of a code to implement these methods.}
}
@incollection{Zumbusch:2000*1,
  author = {G. W. Zumbusch},
  title = {Parallel Adaptively Refined Sparse Grids},
  booktitle = {Multigrid Methods {VI}},
  publisher = {Springer},
  address = {Berlin, Germany},
  year = {2000},
  pages = {285--292},
  editor = {E. Dick and K. Riemslagh and J. Vierendeels},
  volume = {14},
  note = {(Proceedings EMG 6)},
  series = {Lecture Notes in Computational Science and Engineering},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/emg99.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/emg99.pdf},
  abstract = {A parallel version of a finite difference discretization
		  of PDEs on sparse grids is proposed. Sparse grids or
		  hyperbolic crosspoints can be used for the efficient
		  representation of solutions of a boundary value problem,
		  especially in high dimensions, because the number of grid
		  points depends only weakly on the dimension. So far only
		  the `combination' technique for regular sparse grids was
		  available on parallel computers. However, the new approach
		  allows for arbitrary, adaptively refined sparse grids. The
		  efficient parallelisation is based on a dynamic
		  load-balancing approach with space-filling curves.}
}
@article{Zumbusch:2001*2,
  author = {G. W. Zumbusch},
  title = {On the Quality of Space-filling Curve Induced Partitions},
  journal = {Z. Angew. Math. Mech.},
  volume = 81,
  pages = {25--28},
  note = {Suppl. 1, also as report SFB 256, University Bonn, no.
		  674, 2000},
  institution = {SFB 256, University Bonn},
  year = {2001},
  annote = {refereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/gamm00.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/gamm00.pdf},
  abstract = {The solution of partial differential equations on a
		  parallel computer is usually done by a domain decomposition
		  approach. The mesh is split into several partitions mapped
		  onto the processors. However, partitioning of unstructured
		  meshes and adaptive refined meshes in general is an
		  $NP$-hard problem and heuristics are used. In this paper
		  space-filling curve based partition methods are analysed
		  and bounds for the quality of the partitions are given.
		  Furthermore estimates for parallel numerical algorithms
		  such as multigrid and wavelet methods on these partitions
		  are derived.}
}
@techreport{degrd.Zumbusch:1996,
  author = {{\AA}. {\O}deg{\aa}rd and G. W. Zumbusch},
  title = {GraphView - En Java og CGI-pakke for 3D Grafikk},
  institution = {Sintef Applied Mathematics},
  year = {1996},
  address = {Oslo, Norway},
  number = {9},
  note = {STIM working notes},
  annote = {unrefereed},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/stimwn0009.ps.gz},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/stimwn0009.pdf},
  abstract = { I v{\aa}re dager er det viktig {\aa} profilere seg
		  gjennom Internett. En av de siste nyvinningene i denne
		  forbindelse, er muligheten for {\aa} legge inn
		  applikasjoner p{\aa} Web-sider, som gir mulighet for
		  interaksjon mellom Websiden og publikum. Dette har
		  tidligere v{\ae}rt mulig ved hjelp av CGI, The Common
		  Gateway Interface. Ved hjelp av denne teknologien kan man
		  kj{\o}re script, programmer etc. p{\aa} Server, det vil si
		  ``hos seg selv,'' relativi til hvem som har laget Websiden.
		  Ved hjelp av slike verkt{\o}y, kan man hente ut
		  informasjon, lage datasett ved hjelp av programmer ol. Den
		  siste nyskapningen er imidlertid Java. Dette er et
		  programeringsspr{\aa}k spesialdesignet for {\aa} ha en
		  dynamisk interaksjon med publikum p{\aa} Web-sider. I
		  motsetning til CGI, vil et Java program kj{\o}re hos
		  klient, det vil si lokalt hos den som ser p{\aa} Web-siden.
		  Man er dermed ikke begrenset av at data skal sendes over
		  nettet. Dette gj{\o}r det for eksempel mulig {\aa} ha
		  mus-interaksjon p{\aa} Websider. Bakdelen er at man ikke
		  kan ha optimalisert kode, med hensyn p{\aa} arkitektur,
		  siden koden skal kunne kj{\o}res p{\aa} mange forskjellige
		  arkitekturer. Koden som kj{\o}res er
		  derfor``halv-kompilert'', slik at den m{\aa} tolkes endelig
		  av Web-brouseren hos klienten. Dette gj{\o}r at hastigheten
		  ikke er sv{\ae}rt stor, men absolutt brukbar. ... }
}
@inproceedings{Zumbusch:2006*1,
  author = {G. Zumbusch},
  title = {Data Parallel Iterators for Hierarchical Grid and Tree Algorithms},
  booktitle = {Euro-Par 2006 Parallel Processing},
  editor = {W. E. Nagel and W. V. Walter and W. Lehner},
  volume = {4128},
  pages = {625--634},
  series = {LNCS},
  year = {2006},
  publisher = {Springer},
  address = {Heidelberg},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/europar06.pdf},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/europar06.ps.gz},
  http = {http://www.springerlink.com/content/978-3-540-37783-2/},
  annote = {refereed},
  note = {DOI 10.1007/11823285_65},
  abstract = { The data parallel programming language construct of a ``for\-each'' loop
  is proposed in the context of hierarchically nested arrays and unbalanced
  k-ary trees used in high performance applications. In order perform an
  initial evaluation, an implementation of an automatic parallelization
  system for C++ programs is introduced, which consists of a preprocessor
  and a matching library for distributed memory, shared memory and mixed
  model parallelism. For a full compile time dependence analysis and a
  tight distributed memory parallelization, some additional application
  knowledge about alignment of arrays or indirect data access can be put
  into the application's code data declarations. Results for a multigrid
  and a fast multipole benchmark code illustrate the concept.
}
}
@inproceedings{Zumbusch:2007*1,
  author = {G. Zumbusch},
  title = {Data Dependence Analysis for Parallel Tree Codes},
  booktitle = {Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)},
  editor = {B. K{\aa}gstr{\"o}m and E. Elmroth and J. Dongarra and J. Wasniewski},
  volume = {4699},
  pages = {890--899},
  series = {LNCS},
  year = {2007},
  publisher = {Springer},
  address = {Heidelberg},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/para06.pdf},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/para06.ps.gz},
  http = {http://www.springerlink.com/content/},
  annote = {refereed},
  note = {DOI 10.1007/978-3-540-75755-9_106},
  abstract = { Data dependence analysis for automatic parallelization of sequential
  tree codes is discussed.  Hierarchical numerical algorithms often
  use tree data structures for unbalanced, adaptively and dynamically
  created trees.  Moreover, such codes often do not follow a strict
  divide and conquer concept, but introduce some geometric
  neighborhood data dependence in addition to parent-children
  dependencies. Hence, recognition mechanisms and hierarchical
  partition strategies of trees are not sufficient for automatic
  parallelization.  Generic tree traversal operators are proposed as a
  domain specific language. Additional geometric data dependence can
  be specified by code annotation.  A code transformation system with
  data dependence analysis is implemented, which generates several
  versions of parallel codes for different programming models.
}
}
@inproceedings{Zumbusch:2008*1,
  author = {G. Zumbusch},
  title = {A Container-Iterator Parallel Programming Model},
  booktitle = {Parallel Processing and Applied Mathematics},
  editor = {R. Wyrzykowskii and J. Dongarra and K. Karczewski and J. Wasniewski (PPAM 2007)},
  volume = {4967},
  pages = {1130--1139},
  series = {LNCS},
  year = {2008},
  publisher = {Springer},
  address = {Heidelberg},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/ppam07.pdf},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/ppam07.ps.gz},
  http = {http://www.springerlink.com/content/},
  annote = {refereed},
  note = {},
  abstract = {There are several parallel programming models available for numerical
computations at different levels of expressibility and ease of
use. For the development of new domain specific programming models, a
splitting into a distributed data container and parallel data
iterators is proposed. Data distribution is implemented in application
specific libraries. Data iterators are directly analysed and compiled
automatically into parallel code. Target architectures of the
source-to-source translation include shared (pthreads, Cell SPE),
distributed memory (MPI) and hybrid programming styles. A model
applications for grid based hierarchical numerical methods and an
auto-parallelizing compiler are introduced.}
}
@article{Zumbusch:2009*1,
  author = {G. Zumbusch},
  title = {{F}inite {E}lement, {D}iscontinuous {G}alerkin, and {F}inite {D}ifference evolution schemes in spacetime},
  journal = {Class. Quantum Grav.},
  year = {2009},
  volume = {26},
  pages = {175011},
  annote = {refereed},
  ps = {http://arxiv.org/ps/0901.0851v2.ps},
  pdf = {http://arxiv.org/pdf/0901.0851v2.pdf},
  abstract = {Numerical schemes for the vacuum Einstein equations are developed. The Einstein equation in harmonic gauge is second order symmetric hyperbolic. It is discretized in four-dimensional spacetime by Finite Differences, Finite Elements, and Interior Penalty Discontinuous Galerkin methods, the latter related to Regge calculus. The schemes are split into space and time and new time-stepping schemes for wave equations are derived. The methods are evaluated for linear and non-linear test problems of the Apples-with-Apples collection.
}
}
@inproceedings{Zumbusch:2009*2,
  author = {G. Zumbusch},
  title = {Portable Multi-Level Parallel Programming for Cell processor, GPU, and Clusters},
  booktitle = {Proc. Para08},
  editor = {},
  volume = {},
  pages = {},
  series = {LNCS},
  year = {2009},
  publisher = {Springer},
  address = {Heidelberg},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/para08.pdf},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/para08.ps.gz},
  http = {http://www.springerlink.com/content/},
  annote = {refereed},
  note = {},
  abstract = {High performance computers offer lots of parallelism at different
levels of vectorization, thread parallelism, message-passing between
distributed memory architectures and even function off-loading by
hardware accelerators.  Large scale numerical simulations often have
lots of parallelism, which may be difficult to express in a high level
programming language. A common abstract parallel programming style is
proposed, which can be translated automatically into parallel code for
one or a combination of common programming styles for different
parallel architectures.}
}
@misc{Zumbusch:2011*1,
  author = {G. Zumbusch},
  title = {Galerkin Schemes for General Relativity},
  howpublished = {Poster, Advances and Challenges in Computational General Relativity (ACCGR), Brown University},
  year = {2011},
  annote = {unrefereed},
  abstract = {Numerical schemes for Einstein's vacuum equation of general relativity are developed. The equation in harmonic gauge is discretized in space-time by Galerkin methods. A split into space and time leads to time-stepping schemes for second order wave equations. Finite Element and Discontinuous Galerkin are covered along with local mesh refinement in space-time.},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/accgr.pdf}
}
@misc{Zumbusch:2012*1,
  author = {G. Zumbusch},
  title = {Tuning a Finite Difference Stencil},
  howpublished = {Poster, GPU Technology Conference 2012 (GTC), San Jose, CA},
  year = {2012},
  annote = {unrefereed},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/gtc12.pdf}
}
@inproceedings{Zumbusch:2012*2,
  author = {G. Zumbusch},
  title = {Tuning a Finite Difference Computation for Parallel Vector Processors},
  booktitle = {2012 11th International Symposium on Parallel and Distributed Computing},
  pages = {63--70},
  year = {2012},
  editor = {M. Bader and H.-J. Bungartz and D. Grigoras and M. Mehl and
R.-P. Mundani and R. Potolea},
  series = {CPS},
  publisher = {IEEE Press},
  note = {DOI 10.1109/ISPDC.2012.17},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/ispdc12.pdf},
  annote = {refereed},
  abstract = {Current CPU and GPU architectures heavily use data and instruction
  parallelism at different levels. Floating point operations are
  organised in vector instructions of increasing vector length. For
  reasons of performance it is mandatory to use the vector
  instructions efficiently.  Several ways of tuning a model problem
  finite difference stencil computation are discussed. The combination
  of vectorisation and an interleaved data layout, cache aware
  algorithms, loop unrolling, parallelisation and parameter tuning
  lead to optimised implementations at a level of 90\% peak
  performance of the floating point pipelines on recent Intel Sandy
  Bridge and AMD Bulldozer CPU cores, both with AVX vector
  instructions as well as on Nvidia Fermi/ Kepler GPU architectures.
  Furthermore, we present numbers for parallel multi-core/
  multi-processor and multi-GPU configurations.  They represent
  regularly more than an order of speed up compared to a standard
  implementation. The analysis may also explain deficiencies of
  automatic vectorisation for linear data layout and serve as a
  foundation of efficient implementations of more complex expressions.}
}
@inproceedings{Zumbusch:2013*1,
  author = {G. Zumbusch},
  title = {Vectorized Higher Order Finite Difference Kernels},
  booktitle = {PARA 2012, State-of-the-Art in Scientific and Parallel Computing},
  year = {2013},
  editor = {P. Manninen and P. {\"O}ster},
  volume = {7782},
  series = {LNCS},
  pages = {343--357},
  publisher = {Springer},
  address = {Heidelberg},
  pdf = {http://cse.mathe.uni-jena.de/pub/zumbusch/para12.pdf},
  ps = {http://cse.mathe.uni-jena.de/pub/zumbusch/para12.ps.gz},
  annote = {refereed},
  abstract = {Several highly optimized implementations of Finite Difference
  schemes are discussed. The combination of vectorization and an
  interleaved data layout, spatial and temporal loop tiling
  algorithms, loop unrolling, and parameter tuning lead to efficient
  computational kernels in one to three spatial dimensions, truncation
  errors of order two to twelve, and isotropic and compact anisotropic
  stencils. The kernels are implemented on and tuned for several
  processor architectures like recent Intel Sandy Bridge, Ivy Bridge
  and AMD Bulldozer CPU cores, all with AVX vector instructions as
  well as Nvidia Kepler and Fermi and AMD Southern and Northern
  Islands GPU architectures, as well as some older architectures for
  comparison. The kernels are either based on a cache aware spatial
  loop or on time-slicing to compute several time steps at
  once. Furthermore, vector components can either be independent,
  grouped in short vectors of SSE, AVX or GPU warp size or in larger
  virtual vectors with explicit synchronization. The optimal choice of
  the algorithm and its parameters depend both on the Finite
  Difference stencil and on the processor architecture.}
}
@mastersthesis{Fleischer:2005,
  author = {Stefan Fleischer},
  title = {Numerik von {O}ptionsgesch\"{a}ften unter {Z}uhilfenahme der {K}ombinationstechnik},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2005},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/fleischer.pdf},
  abstract = {Für europäische und amerikanische Optionen sowie
                  für zwei- und dreidimensionale Basket- Optionen
                  wird aus den Black-Scholes-Gleichungen der faire
                  Preis numerisch berechnet. Da in den meisten Fällen
                  keine geschlossenen Lösungsformeln exisiteren,
                  müssen die multivariaten parabolischen
                  Optionspreisaufgaben numerisch gelöst werden. Die
                  Eindeutigkeit der Gleichungen wird über die
                  Anfangs- und Randwertprobleme garantiert. Das
                  Berechnen von Näherungslösungen für diese
                  Differentialgleichungen geschieht dann durch
                  Diskretisierung der Gleichungen und durch das Lösen
                  der daraus resultierenden Gleichungssysteme. Die
                  Diskretisierung der parabolischen Gleichungen
                  erfolgt mit Finiten Differenzen auf stark
                  anisotropen, regulären und rechtwinkligen
                  Vollgittern. Bei amerikanischen Optionen wird das
                  Hindernisproblem über das
                  Projektions-Successive-Overrelaxation-Iterationsverfahren
                  numerisch gelöst. Die Basket-Optionen beruhen auf
                  Advektions-Diffusions-Reaktions-Gleichungen.  Um den
                  numerischen Aufwand vertretbar zu halten, wird die
                  Kombinationstechnik basierend auf der
                  Dünngitter-Theorie eingesetzt. Der numerische
                  Aufwand bei steigender Problemdimension kann dabei
                  substantiell reduziert werden, ohne den
                  Informationsgehalt der Lösung wesentlich zu
                  verschlechtern. Damit kann entscheidend dem “Fluch
                  der Dimensionen“ entgegengewirkt und die
                  Komplexität der Algorithmen verbessert werden. Die
                  unterschiedlichen Lösungen auf den stark
                  anisotropen, regulären, rechtwinkligen und
                  gröberen Dünngittern werden miteinander geeignet
                  linear kombiniert und liefern, bis auf eine
                  logarithmische Dämpfung, denselben numerischen
                  Fehler wie die numerische Lösung auf einem feineren
                  isotropen Referenzvollgitter. Anhand von empirischen
                  Ergebnissen soll die vorgestellte Theorie bestätigt
                  werden.}
}
@mastersthesis{Langner:2007,
  author = {Mathias Langner},
  title = {Numerische {B}ehandlung von Contingent Claims},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2007},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/langner.pdf},
  abstract = {Die vorliegende Arbeit befasst sich mit der
                  numerischen Evaluierung von zweidimensionalen
                  Finanzderivaten. Dafür werden zunächst partielle
                  Differentialgleichungen vorgestellt, die die
                  Entwicklung dieser Derivate beschreiben. Zur
                  Diskretisierung der Differentialgleichungen wird
                  eine finite Volumen Methode verwendet.  Im Laufe der
                  Arbeit werden an dem Verfahren einige Modifikationen
                  vorgenommen.  Zunächst wird auf Konvektionsdominanz
                  eingegangen. Um stabile Verfahren mit hoher
                  Konvergenz zu erhalten, werden zwei flux-Limiter
                  vorgestellt: Der van Leer und van Albada Limiter. Da
                  es sich bei beiden Limitern um TVD-Schemata handelt
                  und diese höchstens lineare Konvergenz erreichen,
                  werden modifizierte Limiter-Schemata entwickelt,
                  eine Kombination aus zentralen Differenzen und flux-
                  Limitern.  Eine weitere Veränderung des Verfahrens
                  besteht in der Gittermodifikation. Gradierte Gitter
                  erlauben eine gezielte lokale Verfeinerung bei
                  gleich bleibender Anzahl an Diskretisierungspunkten.
                  Dünne Gitter verfolgen einen Ansatz mit
                  hierarchischen Basen und erlauben eine Berechnung
                  mit wesentlich weniger Speicheraufwand, aber einer
                  nur in geringem Maße schlechteren
                  Fehlerentwicklung. Ein Nachteil dünner Gitter
                  besteht in recht komplizierten Strukturen, die durch
                  die hierarchischen Basen entstehen. Eine Alternative
                  ist die Kombinationstechnik, die das Gesamtproblem
                  in mehrere Teilprobleme zerlegt, welche wiederum mit
                  bekannten Verfahren gelöst werden können.  Die
                  Entwicklung des Fehlers ist äquivalent zu dem auf
                  dünnen Gittern.}
}
@mastersthesis{Franz:2008,
  author = {Thomas Franz},
  title = {Schnelle {M}ultipol-{M}ethode},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2008},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/franz.pdf},
  abstract = {Diese Arbeit befaßt sich mit der Berechnung von
                  Wechselwirkungen zwischen geladenen Partikeln nach
                  dem Coulombschen Gesetz. Werden die Kräfte für jedes
                  Partikel einzeln berechnet, führt dies zu einem
                  Algorithmus der Ordnung O($N^2$). Dies ist in der
                  Praxis für große Partikelzahlen nicht praktikabel,
                  wenn nicht sogar ummöglich, zu berechnen. Deshalb
                  befassen sich vieleWissenschaftler mit Algorithmen,
                  die diese Berechnungen vereinfachen und stark
                  beschleunigen.  Im Wesentlichen baut diese Arbeit
                  auf den Artikeln von L. Greengard, V.  Rohklin,
                  R. Beatson und J. Carrier. Sie entwickelten die
                  Schnelle Multipol-Methode, einen Algorithmus, der
                  die Ordnung O($N$ log $N$) besitzt. Dadurch ist es
                  möglich, auch für eine sehr große Partikelanzahl die
                  Wechelwirkungen zu berechnen.  Ziel der Diplomarbeit
                  war die Umsetzung des Multipol-Algorithmus in JAVA,
                  wobei hier besonders großer Wert auf die
                  Parallelisierung mit Hilfe von Threads gelegt
                  wurde.}
}
@phdthesis{Peuker:2009,
  author = {Frank Peuker},
  title = {Simplicial Methods for Solving Selected Problems in General Relativity Numerically. Regge Calculus and the Finite-Element Method},
  year = {2009},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diss/peuker.pdf}
}
@mastersthesis{Fritzsche:2009,
  author = {Marcus Fritzsche},
  title = {Parallel Numerical Simulation of {N}avier-{S}tokes-Equations on {GPU}s},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2009},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/fritzsche.pdf},
  abstract = {This diploma thesis is about solving the Navier-Stokes equations numerically and emphases parallelizing on GPUs. The work has shown that the computation of the Navier-Stokes equations can be accelerated significantly by using GPUs. The speedup factor is at least 20 which has been shown by the simulations. It is the result of parallelizing the SOR-method which is used to solve the discretization of the poisson pressure equation.}
}
@mastersthesis{Riffert:2009,
  author = {Till W. Riffert},
  title = {Modellierung und {A}pproximation von {Z}ufallsfeldern mit {M}ethoden der hierarchischen {M}atrizen},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2009},
  type = {Diplomarbeit},
  annote = {diplom}
}
@mastersthesis{Reibiger:2009,
  author = {Christian Reibiger},
  title = {{L}\"{o}sung elliptischer {R}andwertprobleme mit {H}ilfe der
{CUDA} {T}echnologie},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2009},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/reibiger.pdf},
  abstract = {In dieser Arbeit wurde zunächst ein
                  Krylov-Unterraum-Verfahren zur Lösung linearer
                  algebraischer Gleichungssysteme für spezielle
                  dünnbesetzte Matrizen (hier als 27-Diagonal-Matrizen
                  bezeichnet) implementiert. Solche Matrizen erhält
                  man insbesondere bei der Diskretisierung von
                  RWA. Durch die Auslagerung großer Teile des
                  Programms auf die vielen parallel arbeitenden
                  Prozessoren einer Grafikkarte konnte bereits eine
                  beachtliche Rechenleistung erzielt werden.  Danach
                  wurde durch das Implementieren und Testen von
                  einigen Varianten der Gebietszerlegungs- und
                  Mehrgitterverfahren eine Beschleunigung des Lösers
                  erreicht. Es ist zu erwarten, dass bei einer
                  weiterentwickelten Grafikkarte eine noch stärkere
                  Beschleunigung erreicht werden kann, weil dann
                  vermutlich größere Teilgebiete in den
                  Vorkonditionierern verwendt werden können.
                  Abschließend wurde die theoretische Grundlage
                  gebildet, um das entwickelte Programm zur Lösung
                  einer nichtlinearen RWA aus der Astrophysik
                  anzuwenden.}
}
@mastersthesis{Boos:2009,
  author = {Anja Boos},
  title = {{S}churkomplement-{V}orkonditionierer f\"{u}r
pseudospektrale {D}iskretisierungen},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2009},
  type = {Diplomarbeit},
  annote = {diplom},
  pdf = {http://cse.mathe.uni-jena.de/pub/diplom/boos.pdf},
  abstract = {Ziel der vorliegenden Arbeit ist die Überprüfung
                  der Vor- und Nachteile von Spektralmethoden.  In der
                  Praxis werden häufig Finite-Elemente-Methoden
                  genutzt, die stückweise lineare Funktionen
                  verwenden. Der Vorteil daran liegt auf der Hand.
                  Die Steifigkeitsmatrix ist dünnbesetzt und kann
                  somit schnell gelöst werden. In der vorliegenden
                  Arbeit wird eine partielle Differentialgleichung auf
                  einem gegebenen Gebiet mit Dirichlet- oder
                  Cauchy-Randbedingungen numerisch mittels
                  Spektralmethoden gelöst. Die Umsetzung erfolgt in
                  der Programmiersprache C/C++. Im Mittelpunkt stehen
                  die Möglichkeiten den Zeit- und Rechenaufwand zu
                  optimieren.  Dafür werden verschiedene Ansätze
                  miteinander zu verglichen. Dies können neben
                  Gebietszerlegungsmethoden auch verschiedene
                  Vorkonditionierer für die jeweiligen Teilprobleme
                  sein.}
}
@mastersthesis{schuhmacher:2009,
  author = {Kathleen Schuhmacher},
  title = {Ausgew\"{a}hlte numerische {P}robleme im gymnasialen {M}athematikuntericht},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2009},
  type = {wiss. {H}ausarbeit {S}taatsexamen},
  annote = {diplom}
}
@mastersthesis{Buechse:2010,
  author = {Katharina B\"{u}chse},
  title = {{D}atenstrukturanalyse für die adaptive {F}inite-{E}lemente-{M}ethode},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2010},
  type = {Diplomarbeit, {STIFT}-{P}reis 2010},
  annote = {diplom},
  abstract = {In der vorliegenden Arbeit werden Herausforderungen diskutiert, die sich durch die Verwendung
unterschiedlicher Speichermedien, hier in erster Linie Hauptspeicher und Festplatte,
beim Lösen von adaptiven finiten Elementen ergeben. Es werden Datenstrukturen
auf ihre Eignung für diese konkrete mathematische Problemstellung analysiert und Mittel
bereitgestellt, welche ohne viel Aktualisierungsaufwand die Arbeit mit den benötigten
Daten ermöglichen. Der eigentliche Rechenablauf wird dahingehend angepasst, dass der
Datenaustausch zwischen Hauptspeicher und Festplatte, der einen (Performance-)Engpass
darstellt, so stark wie möglich eingeschränkt wird.}
}
@mastersthesis{Geppert:2010,
  author = {Gernot Geppert},
  title = {{N}umerische {M}ethoden zur {L}\"{o}sung nichtlinearer, schlecht gestellter
{3D}-{T}omographie-{P}robleme aus der {A}tmosph\"{a}renfernerkundung},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2010},
  type = {Diplomarbeit},
  annote = {diplom}
}
@mastersthesis{Radszuwill:2011,
  author = {Sven Radszuwill},
  title = {Effiziente {L}\"{o}sung der {P}oissongleichung mit {M}ulticore-{A}nwendungen},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2011},
  type = {Bachelorarbeit},
  annote = {diplom}
}
@mastersthesis{Henze:2011,
  author = {Richard Henze},
  title = {Effizientes {L}\"{o}sen der {W}\"{a}rmeleitungsgleichung auf einer {GPU}},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2011},
  type = {Bachelorarbeit},
  annote = {diplom}
}
@mastersthesis{Wickles:2011,
  author = {Roland Wickles},
  title = {Konvergenzuntersuchungen bei {L}\"{o}sungen der {W}ellengleichung mittels finiter {D}ifferenzen},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2011},
  type = {Bachelorarbeit},
  annote = {diplom}
}
@mastersthesis{Gericke:2013,
  author = {Kevin Gericke},
  title = {Einwicklung eines numerischen {M}olek\"{u}lnynamikcodes f\"{u}r {K}ettenmolek\"{u}le},
  school = {Universit\"{a}t Jena},
  year = {2013},
  type = {wiss. {H}ausarbeit {S}taatsexamen},
  annote = {diplom}
}
@mastersthesis{Feierabend:2013,
  author = {J\"{o}rg Feierabend},
  title = {Spektralverfahren auf {GPU}s},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2013},
  type = {Diplomarbeit},
  annote = {diplom}
}
@mastersthesis{Prager:2014,
  author = {Ken Prager},
  title = {Datenkompression in {CUDA} mittels {H}ierarchischer {B}asen},
  school = {Institut f\"{u}r Angewandte Mathematik, Universit\"{a}t Jena},
  year = {2014},
  type = {Bakkalaureatsarbeit},
  annote = {diplom}
}

This file was generated by bibtex2html 1.91.